The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118787 Triangle where T(n,k) = n!*[x^k] ( x/(2*x + log(1-x)) )^(n+1), for n>=k>=0, read by rows. 0
 1, 1, 1, 2, 3, 5, 6, 12, 23, 41, 24, 60, 130, 255, 469, 120, 360, 870, 1860, 3679, 6889, 720, 2520, 6720, 15540, 32858, 65247, 123605, 5040, 20160, 58800, 146160, 328734, 689388, 1371887, 2620169, 40320, 181440, 574560, 1527120, 3638376, 8029980 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Row sums are A112487. Main diagonal is A032188(n) = number of labeled series-reduced mobiles (circular rooted trees) with n leaves. LINKS Table of n, a(n) for n=0..41. FORMULA Main diagonal has e.g.f.: series_reversion[2*x+log(1-x)]. EXAMPLE Triangle begins: 1; 1, 1; 2, 3, 5; 6, 12, 23, 41; 24, 60, 130, 255, 469; 120, 360, 870, 1860, 3679, 6889; 720, 2520, 6720, 15540, 32858, 65247, 123605; 5040, 20160, 58800, 146160, 328734, 689388, 1371887, 2620169; ... Triangle is formed from powers of F(x) = x/(2*x + log(1-x)): F(x)^1 = (1) + 1/2*x + 7/12*x^2 + 17/24*x^3 + 629/720*x^4 +... F(x)^2 = (1 + x)/1! +17/12*x^2 + 2*x^3 + 671/240*x^4 ... F(x)^3 = (2 + 3*x + 5*x^2)/2! + 4*x^3 + 1489/240*x^4 +... F(x)^4 = (6 + 12*x + 23*x^2 + 41/6*x^3)/3! + 8351/720*x^4 +... F(x)^5 = (24 + 60*x + 130*x^2 + 255*x^3 + 469*x^4)/4! +... PROG (PARI) {T(n, k)=local(x=X+X^2*O(X^(k+2))); n!*polcoeff((x/(2*x+log(1-x)))^(n+1), k, X)} CROSSREFS Cf. A118788, A112487, A032188. Sequence in context: A128958 A007435 A125877 * A359668 A191783 A358290 Adjacent sequences: A118784 A118785 A118786 * A118788 A118789 A118790 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, Apr 29 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 11:17 EDT 2023. Contains 365826 sequences. (Running on oeis4.)