%I
%S 1,1,1,1,2,1,1,4,5,2,1,10,29,32,12,1,16,89,206,204,72,1,46,
%T 569,2876,6384,6192,2160,1,76,1949,19946,92664,197712,187920,
%U 64800,1,286,17909,429236,4281324,19657152,41707440,39528000,13608000,1,496,77969,4190126,94420884,918735192
%N Triangle read by rows. Let g[n] = n if n is a prime, otherwise g[n] = 1. Let p[0] = 1; p[n] = g[n]*p[n  1]. Row n gives coefficients of Product_{k=0..n} [x  p[k]], with row 0 = {1}.
%e Triangle begins:
%e 1
%e 1, 1,
%e 1, 2, 1
%e 1, 4, 5, 2
%e 1, 10, 29,32, 12
%e 1, 16, 89, 206, 204, 72
%e 1, 46, 569, 2876, 6384, 6192, 2160
%t g[n_] := If[PrimeQ[n] == True, n, 1] p[0] = 1; p[n_Integer?Positive] := p[n] = g[n]*p[n  1] a = Join[{{1}}, Table[Reverse[CoefficientList[Product[x  p[n], {n, 0, m}], x]], {m, 0, 10}]] aout = Flatten[a]
%Y Cf. primorial numbers A034386, Stirling numbers of the first kind A008275.
%Y Cf. A034386, A008275, A119724, A119489 (row sums of absolute values).
%K sign,tabl
%O 0,5
%A _Roger L. Bagula_, May 20 2006
%E Edited by _N. J. A. Sloane_, Oct 08 2006
