login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Signs of entries in the multiplication table for hypercomplex numbers with Cayley-Dickson construction (by antidiagonals).
0

%I #22 May 22 2023 06:22:13

%S 0,0,0,0,1,0,0,0,1,0,0,1,1,0,0,0,0,0,1,1,0,0,1,0,1,1,0,0,0,1,0,0,1,1,

%T 0,0,0,0,1,1,1,0,0,1,0,0,0,1,0,0,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0,0,1,

%U 0,0,0,1,0,1,1,1,0,0,0,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0,0,1,0,1,1,1,0,0,0

%N Signs of entries in the multiplication table for hypercomplex numbers with Cayley-Dickson construction (by antidiagonals).

%C The signs in the second line of the table give the Thue-Morse sequence (A010060).

%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, section 39.14.1 "The Cayley-Dickson construction", pp.815-818

%H Joerg Arndt, <a href="http://www.jjj.de/fxt/demo/arith/#cayley-dickson">Demo program</a>

%H John C. Baez, <a href="http://math.ucr.edu/home/baez/octonions/">The Octonions</a>, Bull. Amer. Math. Soc., 39 (2002), 145-205.

%e Multiplication table for the octonions:

%e Let e0,e1,...e7 be the units.

%e The third entry in the second row is 3+, meaning that e1*e2==+e3.

%e The product is anti-commutative unless one factor is e0.

%e 0 1 2 3 4 5 6 7

%e 0: 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+

%e 1: 1+ 0- 3- 2+ 5- 4+ 7+ 6-

%e 2: 2+ 3+ 0- 1- 6- 7- 4+ 5+

%e 3: 3+ 2- 1+ 0- 7- 6+ 5- 4+

%e 4: 4+ 5+ 6+ 7+ 0- 1- 2- 3-

%e 5: 5+ 4- 7+ 6- 1+ 0- 3+ 2-

%e 6: 6+ 7- 4- 5+ 2+ 3- 0- 1+

%e 7: 7+ 6+ 5- 4- 3+ 2+ 1- 0-

%e For the multiplication er*ec = +-ep we have p = r XOR c

%e The sign is given in the following array:

%e 0 1 2 3 4 5 6 7

%e 0: + + + + + + + +

%e 1: + - - + - + + -

%e 2: + + - - - - + +

%e 3: + - + - - + - +

%e 4: + + + + - - - -

%e 5: + - + - + - + -

%e 6: + - - + + - - +

%e 7: + + - - + + - -

%e Now replace all + by 0 and all - by 1.

%e Read by antidiagonals (rising order) to obtain the sequence.

%e Cayley-Dickson construction:

%e Multiplication rule is

%e (a,b)*(A,b) = (a*A - B*conj(b), conj(a)*B + A*b)

%e where conj(a,b) := (conj(a), -b) and conj(x):=x for x real

%e [ Transposed rule/table is obtained if rule is changed to

%e (a,b)*(A,b) = (a*A - conj(B)*b, b*conj(A) + B*a) ]

%o (C++)

%o void cp2(ulong a, ulong b, ulong &u, ulong &v) { u=a; v=b; }

%o int CD_sign(ulong r, ulong c, ulong n) // (returns +1 or -1)

%o {

%o int s = +1;

%o while ( true )

%o {

%o if ( (r==0) || (c==0) ) return s;

%o if ( c==r ) return -s;

%o if ( c>r ) { std::swap(r,c); s=-s; }

%o n >>= 1;

%o if ( c>=n ) cp2(c-n, r-n, r, c);

%o else if ( r>=n ) cp2(c, r-n, r, c);

%o }

%o }

%Y Cf. A096809, A010060.

%K nonn,tabl

%O 0,1

%A _Joerg Arndt_, May 20 2006