The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118685 Signs of entries in the multiplication table for hypercomplex numbers with Cayley-Dickson construction (by antidiagonals). 0

%I

%S 0,0,0,0,1,0,0,0,1,0,0,1,1,0,0,0,0,0,1,1,0,0,1,0,1,1,0,0,0,1,0,0,1,1,

%T 0,0,0,0,1,1,1,0,0,1,0,0,0,1,0,0,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0,0,1,

%U 0,0,0,1,0,1,1,1,0,0,0,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0,0,1,0,1,1,1,0,0,0

%N Signs of entries in the multiplication table for hypercomplex numbers with Cayley-Dickson construction (by antidiagonals).

%C The signs in the second line of the table give the Thue-Morse sequence (A010060).

%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, section 39.14.1 "The Cayley-Dickson construction", pp.815-818

%H Joerg Arndt, <a href="http://www.jjj.de/fxt/demo/arith/#cayley-dickson">Demo program</a>

%H John C. Baez, <a href="http://math.ucr.edu/home/baez/octonions/">The Octonions</a>, Bull. Amer. Math. Soc., 39 (2002), 145-205.

%e Multiplication table for the octonions:

%e Let e0,e1,...e7 be the units.

%e The third entry in the second row is 3+, meaning that e1*e2==+e3.

%e The product is anti-commutative unless one factor is e0.

%e 0 1 2 3 4 5 6 7

%e 0: 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+

%e 1: 1+ 0- 3- 2+ 5- 4+ 7+ 6-

%e 2: 2+ 3+ 0- 1- 6- 7- 4+ 5+

%e 3: 3+ 2- 1+ 0- 7- 6+ 5- 4+

%e 4: 4+ 5+ 6+ 7+ 0- 1- 2- 3-

%e 5: 5+ 4- 7+ 6- 1+ 0- 3+ 2-

%e 6: 6+ 7- 4- 5+ 2+ 3- 0- 1+

%e 7: 7+ 6+ 5- 4- 3+ 2+ 1- 0-

%e For the multiplication er*ec = +-ep we have p = r XOR c

%e The sign is given in the following array:

%e 0 1 2 3 4 5 6 7

%e 0: + + + + + + + +

%e 1: + - - + - + + -

%e 2: + + - - - - + +

%e 3: + - + - - + - +

%e 4: + + + + - - - -

%e 5: + - + - + - + -

%e 6: + - - + + - - +

%e 7: + + - - + + - -

%e Now replace all + by 0 and all - by 1.

%e Read by antidiagonals (rising order) to obtain the sequence.

%e Cayley-Dickson construction:

%e Multiplication rule is

%e (a,b)*(A,b) = (a*A - B*conj(b), conj(a)*B + A*b)

%e where conj(a,b) := (conj(a), -b) and conj(x):=x for x real

%e [ Transposed rule/table is obtained if rule is changed to

%e (a,b)*(A,b) = (a*A - conj(B)*b, b*conj(A) + B*a) ]

%o /* C++ (returns +1 or -1) */

%o void cp2(ulong a, ulong b, ulong &u, ulong &v) { u=a; v=b; } /* auxiliary func. */

%o int CD_sign(ulong r, ulong c, ulong n)

%o {

%o int s = +1;

%o while ( true )

%o {

%o if ( (r==0) || (c==0) ) return s;

%o if ( c==r ) return -s;

%o if ( c>r ) { swap2(r,c); s=-s; }

%o n >>= 1;

%o if ( c>=n ) cp2(c-n, r-n, r, c);

%o else if ( r>=n ) cp2(c, r-n, r, c);

%o }

%o }

%o /* Note: the function void swap2(ulong &x, ulong &y) shall swap its arguments */

%Y Cf. A096809, A010060.

%K nonn,tabl

%O 0,1

%A _Joerg Arndt_, May 20 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 05:51 EDT 2021. Contains 345018 sequences. (Running on oeis4.)