login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118682
Triangle where T(n,k) depends on the last digit of prime(n)*prime(k). If this is 1 or 9, T(n,k) = 1; if 3 or 7, T(n,k) = 2; otherwise T(n,k) = 0.
0
0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 1, 0, 2, 0, 2, 1, 2, 2, 1, 0, 1, 0, 1, 2, 1, 1, 2, 1, 0, 2, 0, 2, 1, 2, 2, 1, 2, 1
OFFSET
0,12
COMMENTS
Previous title: A triangular factor function based on the modulo 10 last digit multiplication behavior of the primes (modeled on Jacobi symbols and Legendre symbols).
T(n,k) = 0 exactly when one of the primes is 2 or 5.
FORMULA
T(n,k) = vector(0,1,0,2,0,0,0,2,0,1)[mod(prime(n)*prime(k),10)+1].
EXAMPLE
0
0, 1
0, 0, 0
0, 1, 0, 1
0, 2, 0, 2, 1
0, 1, 0, 1, 2, 1
0, 1, 0, 1, 2, 1, 1
0, 2, 0, 2, 1, 2, 2, 1
0, 1, 0, 1, 2, 1, 1, 2, 1
0, 2, 0, 2, 1, 2, 2, 1, 2, 1
MATHEMATICA
f[n_, m_] = If[(Mod[Prime[n]*Prime[m], 10] - 1 == 0) || (Mod[Prime[n]*Prime[m], 10] - 9 == 0), 1, If[(Mod[Prime[n]*Prime[m], 10] - 3 == 0) || (Mod[Prime[n]*Prime[m], 10] - 7 == 0), 2, 0]] a = Table[Table[f[n, m], {n, 1, m}], {m, 1, 10}] aout = Flatten[a]
This function gives an op-art pattern from the primes as: bout = Table[f[n, m], {n, 1, 60}, {m, 1, 60}]; ListDensityPlot[bout, Mesh -> False]
CROSSREFS
Sequence in context: A277144 A069848 A194702 * A198393 A083054 A336921
KEYWORD
nonn,tabl,base
AUTHOR
Roger L. Bagula, May 19 2006
EXTENSIONS
Edited by Franklin T. Adams-Watters, Sep 30 2011
STATUS
approved