Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jun 15 2024 01:02:29
%S 0,1,2,3,11,22,33,101,111,121,131,202,212,222,232,303,313,323,333,
%T 1001,1111,1221,1331,2002,2112,2222,2332,3003,3113,3223,3333,10001,
%U 10101,10201,10301,11011,11111,11211,11311,12021,12121,12221,12321,13031
%N Palindromes in base 4 (written in base 4).
%C 2*a(n) and 3*a(n) give palindromes in base 10 for any n. - _Arkadiusz Wesolowski_, Jun 22 2012
%C Equivalently, palindromes k (written in base 10) such that 3*k is a palindrome. - _Bruno Berselli_, Sep 12 2018
%t (* get NextPalindrome from A029965 *) Select[NestList[NextPalindrome, 0, 290], Max@IntegerDigits@# < 4 &] (* _Robert G. Wilson v_, May 09 2006 *)
%o (Python)
%o from gmpy2 import digits
%o def A118595(n):
%o if n == 1: return 0
%o y = (x:=1<<(n.bit_length()-2&-2))<<2
%o return int((s:=digits(n-x,4))+s[-2::-1] if n<x+y else (s:=digits(n-y,4))+s[::-1]) # _Chai Wah Wu_, Jun 14 2024
%Y Cf. A014192, A057148, A118594, A118595, A118596, A118597, A118598, A118599, A118600, A002113.
%K nonn,base
%O 1,3
%A _Martin Renner_, May 08 2006
%E More terms from _Robert G. Wilson v_, May 09 2006