Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #2 Mar 31 2012 14:40:00
%S 2,3,5,7,11,31,71,101,701,941,971,991,9001,9011,9221,9521,9941,70001,
%T 76001,97001,99401,99431,99571,99989,940001,973001,987101,993401,
%U 997811,999431
%N Reverse digits of largest Chen primes, append to sequence if result is larger Chen prime then previous one with reverse digits.
%C Although Chen primes are a subset of primes, this sequence is not a subset of A098922. The first number that is not member of the later is 9011.
%p # Check if number is Chen prime ischenprime:=proc(n); if (isprime(n) = 'true') then if (isprime(n+2) = 'true' or numtheory[bigomega](n+2) = 2) then return 'true' else return 'false' fi fi end: #Reverse digits obrni_stev:=proc(n) local i, tren, tren1, st, ans; ans:=[ ]: tren:=n: tren1:=0: for i while (tren>0) do st:=round(10*frac(tren/10)): ans:=[op(ans), st]: tren:=trunc(tren/10): od: for i from 0 to nops(ans)-1 do tren1:= tren1 + op(nops(ans)-i, ans)*10^(i): od: return tren1 end: ts_inv_prav_chen_pra:= proc(n) local i, tren, ans; tren:=0: ans:=[ ]: for i from 1 to n do if (ischenprime(i)='true' and ischenprime(obrni_stev(i))='true' and obrni_stev(i)>tren) then ans:=[op(ans),obrni_stev(i)]: tren:=obrni_stev(i): fi: od: return ans end: ts_inv_prav_chen_pra(200000);
%Y Cf. A004087, A098922, A109611.
%K nonn,base,less
%O 1,1
%A _Jani Melik_, May 05 2006