login
A118449
Number of rooted n-edge one-vertex maps on a non-orientable genus-4 surface (dually: one-face maps).
2
0, 488, 11660, 160680, 1678880, 14771680, 115457832, 827303280, 5545466520, 35257287120, 214730922120, 1262004908528, 7197437563680, 40007524376960, 217501266966160, 1159737346931040, 6079078540464072, 31385516059734960
OFFSET
3,2
COMMENTS
One-vertex maps on a non-orientable genus-3 surface are counted by A118448. Such maps are also called bouquets of loops (and their duals are called unicellular maps).
REFERENCES
E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
D. M. Jackson and T. I. Visentin, An atlas of the smaller maps in orientable and nonorientable surfaces. CRC Press, Boca Raton, 2001.
LINKS
Didier Arquès and Alain Giorgetti, Counting rooted maps on a surface, Theoret. Comput. Sci. 234 (2000), no. 1-2, 255--272. MR1745078 (2001f:05078).
FORMULA
O.g.f.: -(R-1)^4(R+1)^3(65R^3+337R^2-433R-945)/(256R^11), where R=sqrt(1-4x).
a(n) ~ n^(9/2) * 2^(2*n-3) / sqrt(Pi) * (1 - 2*sqrt(Pi)/(3*sqrt(n))). - Vaclav Kotesovec, Oct 27 2024
MATHEMATICA
With[{r=Sqrt[1-4x]}, Drop[CoefficientList[Series[-(r-1)^4 (r+1)^3 (65r^3+ 337r^2- 433r-945)/(256r^11), {x, 0, 20}], x], 3]] (* Harvey P. Dale, Aug 05 2019 *)
CROSSREFS
Cf. A118448. A diagonal of A214806.
Sequence in context: A045011 A253336 A205315 * A223398 A214334 A201835
KEYWORD
nonn
AUTHOR
Valery A. Liskovets, May 04 2006
STATUS
approved