OFFSET
3,2
COMMENTS
One-vertex maps on a non-orientable genus-3 surface are counted by A118448. Such maps are also called bouquets of loops (and their duals are called unicellular maps).
REFERENCES
E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
D. M. Jackson and T. I. Visentin, An atlas of the smaller maps in orientable and nonorientable surfaces. CRC Press, Boca Raton, 2001.
LINKS
Didier Arquès and Alain Giorgetti, Counting rooted maps on a surface, Theoret. Comput. Sci. 234 (2000), no. 1-2, 255--272. MR1745078 (2001f:05078).
FORMULA
O.g.f.: -(R-1)^4(R+1)^3(65R^3+337R^2-433R-945)/(256R^11), where R=sqrt(1-4x).
a(n) ~ n^(9/2) * 2^(2*n-3) / sqrt(Pi) * (1 - 2*sqrt(Pi)/(3*sqrt(n))). - Vaclav Kotesovec, Oct 27 2024
MATHEMATICA
With[{r=Sqrt[1-4x]}, Drop[CoefficientList[Series[-(r-1)^4 (r+1)^3 (65r^3+ 337r^2- 433r-945)/(256r^11), {x, 0, 20}], x], 3]] (* Harvey P. Dale, Aug 05 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Valery A. Liskovets, May 04 2006
STATUS
approved