login
A118432
Denominator of sum of reciprocals of first n 5-simplex numbers A000389.
2
1, 6, 14, 56, 504, 168, 264, 198, 286, 1001, 273, 1456, 1904, 2448, 15504, 969, 1197, 2926, 3542, 42504, 10120, 11960, 14040, 8190, 47502, 5481, 6293, 28768, 32736, 185504, 41888, 11781, 13209, 29526, 164502, 73112, 81016
OFFSET
1,2
COMMENTS
Numerators are A118431. Fractions are: 1/1, 7/6, 17/14, 69/56, 625/504, 209/168, 329/264, 247/198, 357/286, 1250/1001, 341/273, 1819/1456, 2379/1904, 3059/2448, 19375/15504, 1211/969, 1496/1197, 3657/2926, 4427/3542, 53125/42504, 12649/10120, 14949/11960, 17549/14040, 10237/8190, 59375/47502, 6851/5481, 7866/6293, 35959/28768, 40919/32736, 231875/185504, 52359/41888, 14726/11781, 16511/13209, 36907/29526, 205625/164502, 91389/73112, 101269/81016. The denominator of sum of reciprocals of first n triangular numbers is A026741. The denominator of sum of reciprocals of first n tetrahedral numbers is A118392. The denominator of sum of reciprocals of first n pentatope numbers is A118412.
LINKS
FORMULA
A118411(n)/A118412(n) = Sum_{i=1..n} (1/A000389(n)).
A118411(n)/A118412(n) = Sum_{i=1..n} (1/C(n,5)).
A118411(n)/A118412(n) = Sum_{i=1..n} (1/(n*(n+1)*(n+2)*(n+3)*(n+4)/120)).
EXAMPLE
a(1) = 1 = denominator of 1/1.
a(2) = 6 = denominator of 7/6 = 1/1 + 1/6.
a(3) = 14 = denominator of 17/14 = 1/1 + 1/6 + 1/21.
a(4) = 56 = denominator of 69/56 = 1/1 + 1/6 + 1/21 + 1/56.
a(5) = 42 = denominator of 55/42 = 1/1 + 1/6 + 1/21 + 1/56 + 1/126.
a(10) = 1001 = denominator of 1250/1001 = 1/1+ 1/6 + 1/21 + 1/56 + 1/126 + 1/252 + 1/462 + 1/792 + 1/1287 + 1/2002.
a(20) = 42504 = denominator of 53125/42504 = 1/1 + 1/6 + 1/21 + 1/56 + 1/126 + 1/252 + 1/462 + 1/792 + 1/1287 + 1/2002 + 1/3003 + 1/4368 + 1/6188 + 1/8568 + 1/11628 + 1/15504 + 1/20349 + 1/26334 + 1/33649 + 1/42504.
MATHEMATICA
Denominator[Accumulate[1/Binomial[Range[5, 50], 5]]] (* Harvey P. Dale, Jul 17 2016 *)
KEYWORD
easy,frac,nonn
AUTHOR
Jonathan Vos Post, Apr 28 2006
STATUS
approved