Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 16 2022 20:45:15
%S 1,10,36,104,272,672,1600,3712,8448,18944,41984,92160,200704,434176,
%T 933888,1998848,4259840,9043968,19136512,40370176,84934656,178257920,
%U 373293056,780140544,1627389952,3388997632,7046430720,14629732352,30333206528,62813896704
%N a(n) = (4*n - 3) * 2^(n - 1).
%C Central terms of the triangle in A118413.
%H Vincenzo Librandi, <a href="/A118415/b118415.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4).
%F a(n) = A016813(n-1)*A000079(n-1).
%F O.g.f.: x*(1+6*x)/(-1+2*x)^2 . - _R. J. Mathar_, Feb 26 2008
%t CoefficientList[Series[(1 + 6 x)/(-1 + 2 x)^2, {x, 0, 40}], x] (* _Vincenzo Librandi_, May 21 2014 *)
%t LinearRecurrence[{4,-4},{1,10},30] (* _Harvey P. Dale_, Sep 16 2022 *)
%o (Magma)[(4*n-3)*2^(n-1): n in [1..40]]; // _Vincenzo Librandi_, Dec 26 2010
%Y Cf. A058962.
%K nonn,easy
%O 1,2
%A _Reinhard Zumkeller_, Apr 27 2006
%E More terms from _R. J. Mathar_, Feb 26 2008