Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Apr 25 2016 11:45:29
%S 1,6,19,136,83,119,656,73,190,121,1816,559,679,815,3872,1139,886,513,
%T 2360,2023,2299,2599,11696,3275,7306,1353,5992,1653,5455,5983,26176,
%U 7139,15538,8435,12184,3293,3553,11479,49360
%N Numerator of sum of reciprocals of first n pentatope numbers A000332.
%C Denominators are A118412. Fractions are: 1/1, 6/5, 19/15, 136/105, 83/63, 119/90, 656/495, 73/55, 190/143, 121/91, 1816/1365, 559/420, 679/510, 815/612, 3872/2907, 1139/855, 886/665, 513/385, 2360/1771, 2023/1518, 2299/1725, 2599/1950, 11696/8775, 3275/2457, 7306/5481, 1353/1015, 5992/4495, 1653/1240, 5455/4092, 5983/4488, 26176/19635, 7139/5355, 15538/11655, 8435/6327, 12184/9139, 3293/2470, 3553/2665, 11479/8610, 49360/37023. The denominator of sum of reciprocals of first n triangular numbers is A026741. The denominator of sum of reciprocals of first n tetrahedral numbers is A118392.
%F A118411(n)/A118412(n) = SUM[i=1..n] (1/A000332(n)). A118411(n)/A118412(n) = SUM[i=1..n] (1/C(n+2,4)). A118411(n)/A118412(n) = SUM[i=1..n] (1/(n*(n+1)*(n+2)*(n+3)/24)).
%e a(1) = 1 = numerator of 1/1.
%e a(2) = 6 = numerator of 6/5 = 1/1 + 1/5.
%e a(3) = 19 = numerator of 19/15 = 1/1 + 1/5 + 1/15.
%e a(4) = 136 = numerator of 136/105 = 1/1 + 1/5 + 1/15 + 1/35.
%e a(5) = 55 = numerator of 55/42 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70.
%e a(10) = 190 = numerator of 190/143 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70 + 1/126 + 1/210 + 1/330 + 1/495 + 1/715.
%e a(20) = 2360 = numerator of 2360/1771 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70 + 1/126 + 1/210 + 1/330 + 1/495 + 1/715 + 1/1001 + 1/1365 + 1/1820 + 1/2380 + 1/3060 + 1/3876 + 1/4845 + 1/5985 + 1/7315 + 1/8855.
%o (PARI) s=0;for(i=4,50,s+=1/binomial(i,4);print(numerator(s))) /* Phil Carmody, Mar 27 2012 */
%Y Cf. A000332, A022998, A026741, A118391, A118391, A118412.
%K easy,frac,nonn
%O 1,2
%A _Jonathan Vos Post_, Apr 27 2006