login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of sum of reciprocals of first n tetrahedral numbers A000292.
5

%I #19 Feb 19 2021 09:45:58

%S 1,4,20,5,7,56,24,15,55,44,52,91,35,80,272,51,57,380,140,77,253,184,

%T 200,325,117,252,812,145,155,992,352,187,595,420,444,703,247,520,1640,

%U 287,301,1892,660,345,1081,752,784,1225,425,884,2756,477,495,3080

%N Denominator of sum of reciprocals of first n tetrahedral numbers A000292.

%C Numerators are A118391.

%H G. C. Greubel, <a href="/A118392/b118392.txt">Table of n, a(n) for n = 1..1000</a>

%F A118391(n)/A118392(n) = Sum_{i=1..n} 1/A000292(n).

%F A118391(n)/A118392(n) = Sum_{i=1..n} 1/C(n+2,3).

%F A118391(n)/A118392(n) = Sum_{i=1..n} 6/(n*(n+1)*(n+2)).

%F a(n) = denominator( 3*n*(n+3)/(2*(n+1)*(n+2)) ). - _G. C. Greubel_, Feb 18 2021

%e a(1) = 1 = denominator of 1/1.

%e a(2) = 4 = denominator of 5/4 = 1/1 + 1/4.

%e a(3) = 20 = denominator of 27/20 = 1/1 + 1/4 + 1/10.

%e a(4) = 5 = denominator of 7/5 = 1/1 + 1/4 + 1/10 + 1/20.

%e a(5) = 7 = denominator of 10/7 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35.

%e a(20) = 77 = denominator of 115/77 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35 + 1/56 + 1/84 + 1/120 + 1/165 + 1/220 + 1/286 + 1/364 + 1/455 + 1/560 + 1/680 + 1/816 + 1/969 + 1/1140 + 1/1330 + 1/1540.

%e Fractions are: 1/1, 5/4, 27/20, 7/5, 10/7, 81/56, 35/24, 22/15, 81/55, 65/44, 77/52, 135/91, 52/35, 119/80, 405/272, 76/51, 85/57, 567/380, 209/140, 115/77, 378/253, 275/184, 299/200, 486/325, 175/117, 377/252, 1215/812, 217/145, 232/155, 1485/992.

%p A118392:= n -> denom(3*n*(n+3)/(2*(n+1)*(n+2)));

%p seq(A118392(n), n = 1..60); # _G. C. Greubel_, Feb 18 2021

%t Accumulate[1/Binomial[Range[70]+2,3]]//Denominator (* _Harvey P. Dale_, Jun 07 2018 *)

%o (PARI) s=0;for(i=3,50,s+=1/binomial(i,3);print(denominator(s))) /* _Phil Carmody_, Mar 27 2012 */

%o (Sage) [denominator(3*n*(n+3)/(2*(n+1)*(n+2))) for n in (1..60)] # _G. C. Greubel_, Feb 18 2021

%o (Magma) [Denominator(3*n*(n+3)/(2*(n+1)*(n+2))): n in [1..60]]; // _G. C. Greubel_, Feb 18 2021

%Y Cf. A000292, A022998, A026741, A118391.

%K easy,frac,nonn

%O 1,2

%A _Jonathan Vos Post_, Apr 27 2006

%E More terms from _Harvey P. Dale_, Jun 07 2018