Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Nov 19 2012 05:59:43
%S 1,3,8,1,22,4,1,60,16,4,1,164,56,18,4,1,448,188,68,20,4,1,1224,608,
%T 248,80,22,4,1,3344,1920,864,312,92,24,4,1,9136,5952,2928,1152,380,
%U 104,26,4,1,24960,18192,9696,4128,1472,452,116,28,4,1,68192,54976,31536,14400
%N Triangle read by rows: T(n,k) is the number of ternary sequences of length n containing k subsequences 00 (n>=0, 0<=k<=max(0,n-1)).
%C Sum of entries in row n is 3^n (A000244). T(n,0) = A028859(n). T(n,1) = A073388(n-2). Sum(k*T(n,k),k=0..n-1) = (n-1)*3^(n-2) (A027471).
%H Alois P. Heinz, <a href="/A118357/b118357.txt">n = 0..141, flattened</a>
%F G.f.: G-1, where G = G(t,z) = [1+(1-t)z]/[1-(2+t)z-2(1-t)z^2]. G.f. of column k is z^(k+1)*(1-2z)^(k-1)/(1-2z-2z^2)^(k+1) (k>=1).
%e T(4,2) = 4 because we have 0001, 0002, 1000 and 2000.
%e Triangle starts:
%e 1;
%e 3;
%e 8,1;
%e 22,4,1;
%e 60,16,4,1;
%p G:=(1+(1-t)*z)/(1-(2+t)*z-2*(1-t)*z^2): Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(coeff(Gser,z^n)) od: 1; for n from 1 to 12 do seq(coeff(P[n],t,j),j=0..n-1) od; # yields sequence in triangular form
%t nn=15;a=1/(1-2x);b=x/(1-y x)+1;f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[a b/(1-2x^2/((1-y x)(1-2x))),{x,0,nn}],{x,y}]]//Grid (* _Geoffrey Critzer_, Nov 19 2012 *)
%Y Cf. A000244, A028859, A073388, A027471.
%K nonn,tabf
%O 0,2
%A _Emeric Deutsch_, May 24 2006