Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Feb 18 2021 00:29:06
%S 1,1,0,1,1,0,1,2,1,0,1,3,6,1,0,1,4,13,7,1,0,1,5,21,42,8,1,0,1,6,30,96,
%T 54,9,1,0,1,7,40,163,325,67,10,1,0,1,8,51,244,770,445,81,11,1,0,1,9,
%U 63,340,1353,2688,583,96,12,1,0,1,10,76,452,2093,6530,3842,740,112,13,1,0
%N Pendular triangle, read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), else T(n,k) = T(n,n-1-k) + 3*T(n-1,k), for n>=k>=0, with T(n,0)=1 and T(n,n)=0^n.
%C See definition of pendular triangle and pendular sums at A118340.
%H G. C. Greubel, <a href="/A118350/b118350.txt">Rows n = 0..100 of the triangle, flattened</a>
%F T(2*n+m,n) = [A118351^(m+1)](n), i.e., the m-th lower semi-diagonal forms the self-convolution (m+1)-power of the central terms A118351.
%e Row 6 equals the pendular sums of row 5,
%e [1, 4, 13, 7, 1, 0], where the sums proceed as follows:
%e [1, __, __, __, __, __]: T(6,0) = T(5,0) = 1;
%e [1, __, __, __, __, 1]: T(6,5) = T(6,0) + 3*T(5,5) = 1 + 3*0 = 1;
%e [1, 5, __, __, __, 1]: T(6,1) = T(6,5) + T(5,1) = 1 + 4 = 5;
%e [1, 5, __, __, 8, 1]: T(6,4) = T(6,1) + 3*T(5,4) = 5 + 3*1 = 8;
%e [1, 5, 21, __, 8, 1]: T(6,2) = T(6,4) + T(5,2) = 8 + 13 = 21;
%e [1, 5, 21, 42, 8, 1]: T(6,3) = T(6,2) + 3*T(5,3) = 21 + 3*7 = 42;
%e [1, 5, 21, 42, 8, 1, 0] finally, append a zero to obtain row 6.
%e Triangle begins:
%e 1;
%e 1, 0;
%e 1, 1, 0;
%e 1, 2, 1, 0;
%e 1, 3, 6, 1, 0;
%e 1, 4, 13, 7, 1, 0;
%e 1, 5, 21, 42, 8, 1, 0;
%e 1, 6, 30, 96, 54, 9, 1, 0;
%e 1, 7, 40, 163, 325, 67, 10, 1, 0;
%e 1, 8, 51, 244, 770, 445, 81, 11, 1, 0;
%e 1, 9, 63, 340, 1353, 2688, 583, 96, 12, 1, 0;
%e 1, 10, 76, 452, 2093, 6530, 3842, 740, 112, 13, 1, 0;
%e 1, 11, 90, 581, 3010, 11760, 23286, 5230, 917, 129, 14, 1, 0; ...
%e Central terms are T(2*n,n) = A118351(n);
%e semi-diagonals form successive self-convolutions of the central terms:
%e T(2*n+1,n) = A118352(n) = [A118351^2](n),
%e T(2*n+2,n) = A118353(n) = [A118351^3](n).
%t T[n_, k_, p_]:= T[n,k,p] = If[n<k || k<0, 0, If[k==0, 1, If[k==n, 0, If[n<=2*k, T[n,n-k-1,p] + p*T[n-1,k,p], T[n,n-k,p] + T[n-1,k,p] ]]]];
%t Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 17 2021 *)
%o (PARI) T(n,k)=if(n<k || k<0,0,if(k==0,1,if(n==k,0, if(n>2*k,T(n,n-k)+T(n-1,k),T(n,n-1-k)+3*T(n-1,k)))))
%o (Sage)
%o @CachedFunction
%o def T(n, k, p):
%o if (k<0 or n<k): return 0
%o elif (k==0): return 1
%o elif (k==n): return 0
%o elif (n>2*k): return T(n,n-k,p) + T(n-1,k,p)
%o else: return T(n, n-k-1, p) + p*T(n-1, k, p)
%o flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 17 2021
%o (Magma)
%o function T(n,k,p)
%o if k lt 0 or n lt k then return 0;
%o elif k eq 0 then return 1;
%o elif k eq n then return 0;
%o elif n gt 2*k then return T(n,n-k,p) + T(n-1,k,p);
%o else return T(n,n-k-1,p) + p*T(n-1,k,p);
%o end if;
%o return T;
%o end function;
%o [T(n,k,3): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 17 2021
%Y Cf. A118351, A118352, A118353, A118354.
%Y Cf. A167763 (p=0), A118340 (p=1), A118345 (p=2), this sequence (p=3).
%K nonn,tabl
%O 0,8
%A _Paul D. Hanna_, Apr 26 2006