login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Euler transform of the negative of the Liouville function.
6

%I #23 Sep 02 2023 20:32:20

%S 1,-1,1,0,-1,2,-2,2,0,-2,3,-2,1,2,-3,3,-2,0,3,-2,3,-2,0,2,-2,3,-1,0,1,

%T -2,5,0,0,1,-2,1,1,2,0,1,-2,1,4,-1,4,-2,-3,6,-2,5,6,-8,6,-4,2,9,-8,7,

%U -4,-1,11,-1,5,1,-8,5,2,4,7,-8,4,2,1,14,-2,0,-1,-6,19,2,5,6,-15,12,1,3,18,-17,1,9,0,29,-4,-3,4,-13,14,17,2,0,-4

%N Euler transform of the negative of the Liouville function.

%H Peter Bala, <a href="/A118205/a118205.pdf">Cyclotomic polynomials and the generating functions of A118205 and A118206</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Cyclotomic_polynomial">Cyclotomic polynomial</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Liouville_function">Liouville function</a>

%F G.f.: A(x) = Product_{k>=1} (1 - x^k)^lambda(k) where lambda(k) is the Liouville function, A008836.

%F G.f.: A(x) = - Product_{k >= 1} C(k,x^k), where C(k,x) denotes the k-th cyclotomic polynomial. - _Peter Bala_, Mar 31 2023

%t nmax = 100; lambda[k_Integer?Positive] := If[ k > 1, (-1)^Total[ Part[Transpose[FactorInteger[k]], 2] ], 1 ]; CoefficientList[ Series[ Product[ (1 - x^k)^lambda[k], {k, 1, nmax} ], {x, 0, nmax} ], x ]

%t (* Second program (needs Mma >= 7.0): *)

%t nmax = 100;

%t Product[(1 - x^n)^LiouvilleLambda[n], {n, 1, nmax}] + O[x]^(nmax+1) // CoefficientList[#, x]& (* _Jean-François Alcover_, Jan 08 2020 *)

%Y Cf. A061020, A117208, A118206, A118207, A118208.

%K sign,easy

%O 0,6

%A _Stuart Clary_, Apr 15 2006