Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 29 2021 10:29:43
%S 1,23,356,4800,60355,727021,8504798,97393686,1097393685,
%T 10101010102107494695,1121212121213218605806,122333333333334430727018,
%U 13253646464646465743858331,1427395060606060607157999745,152942546575757575758673151260,16314558708191919191920289312876
%N Partial sums of n concatenated n times.
%D F. Smarandache, "Properties of the numbers", Univ. of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ.
%F a(n) = Sum_{i=1..n} A000461(i). a(n) = Sum_{i=1..n} i*(10^(i*L(i))-1)/(10^L(i)-1) where L(i) = A004216(i) + 1 = floor(log_10(10i)).
%e a(2) = 1 + 22 = 23 is prime.
%e a(6) = 1 + 22 + 333 + 4444 + 55555 + 666666 = 727021 is prime.
%e For what value of n is the next prime a(n)?
%e a(158), which has 474 digits, is prime. - _Harvey P. Dale_, Oct 17 2011
%t Accumulate[FromDigits/@Table[Flatten[IntegerDigits/@PadLeft[{},n,n]], {n,15}]] (* _Harvey P. Dale_, Oct 17 2011 *)
%Y Cf. A000461 (concatenate n n times), A004216, A048376, A053422.
%K base,easy,nonn
%O 1,2
%A _Jonathan Vos Post_, May 11 2006