%I #23 Jan 03 2017 23:54:30
%S 1,3,5,9,11,17,19,21,33,35,37,41,43,65,67,69,73,75,81,83,85,129,131,
%T 133,137,139,145,147,149,161,163,165,169,171,257,259,261,265,267,273,
%U 275,277,289,291,293,297,299,321,323,325,329,331,337,339,341,513,515,517
%N Even Fibbinary numbers + 1; also 2*Fibbinary(n) + 1.
%C a(n) = A022340(n) + 1 = 2*A003714(n) + 1.
%H Alois P. Heinz, <a href="/A118113/b118113.txt">Table of n, a(n) for n = 0..1000</a>
%F Solutions to {x : binomial(3x,x) mod (x+1) != 0 } are given in A022341. The corresponding values of binomial(3x,x) mod (x+1) are given here.
%p F:= combinat[fibonacci]:
%p b:= proc(n) local j;
%p if n=0 then 0
%p else for j from 2 while F(j+1)<=n do od;
%p b(n-F(j))+2^(j-2)
%p fi
%p end:
%p a:= n-> 2*b(n)+1:
%p seq(a(n), n=0..70); # _Alois P. Heinz_, Aug 03 2012
%t Select[Table[Mod[Binomial[3*k,k], k+1], {k,1200}], #>0&]
%Y Cf. A000108, A118112, A022341.
%Y Cf. A003714 (Fibbinary numbers), A022340 (even Fibbinary numbers).
%Y Cf. A263190, A171791, A263075.
%K nonn
%O 0,2
%A _Labos Elemer_, Apr 13 2006
%E New definition from _T. D. Noe_, Dec 19 2006