login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of inverse semigroups of order <= n.
0

%I #16 May 03 2023 09:12:39

%S 1,3,8,24,76,284,1195,5832,32254,201417,1400068,10724115,89584802,

%T 809190807,7844705449

%N Number of inverse semigroups of order <= n.

%D M. V. Lawson, Inverse Semigroups: The Theory of Partial Symmetries. Singapore: World Scientific, 1999.

%D E. S. Lyapin, Semigroups. Providence, RI: Amer. Math. Soc., 1974.

%H Alan Weinstein, <a href="https://www.ams.org/notices/199607/weinstein.pdf">Groupoids: Unifying Internal and External Symmetry</a>, Not. Amer. Math. Soc. 43, 744-752, 1996.

%H Eric Weisstein et al., <a href="http://mathworld.wolfram.com/InverseSemigroup.html">Inverse Semigroup</a>.

%H <a href="/index/Se#semigroups">Index entries for sequences related to semigroups</a>.

%F a(n) = Sum_{i=1..n} A001428(i).

%e a(7) = 1195 = 1 + 2 + 5 + 16 + 52 + 208 + 911.

%Y Partial sums of A001428.

%K nonn,more

%O 1,2

%A _Jonathan Vos Post_, May 11 2006

%E More terms from the data at A001428 added by _Amiram Eldar_, May 03 2023