|
|
A118067
|
|
Number of (directed) Hamiltonian paths in the 3 X n knight graph.
|
|
6
|
|
|
0, 0, 0, 16, 0, 0, 104, 792, 1120, 6096, 21344, 114496, 257728, 1292544, 3677568, 17273760, 46801984, 211731376, 611507360, 2645699504, 7725948608, 32451640000, 97488160384, 397346625760, 1214082434112, 4835168968464, 15039729265856, 58641619298000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
1. Jelliss computes the number of tour diagrams (which is equal to half the number of tours). 2. Sequence A079137 computes the number of tour DIAGRAMS for a 4 X k board (again, equal to half the number of tours). 3. Kraitchik (1942) incorrectly reports 376 tour diagrams for the 3 X 8 case; the correct number is 396 (i.e., 792 tours) [cf. Rose, Jelliss].
|
|
REFERENCES
|
Kraitchik, M., Mathematical Recreations. New York: W. W. Norton, pp. 264-5, 1942.
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 1..1861
G. Jelliss, Open Knight's Tours of Three-Rank Boards
Seiichi Manyama calculated a(14)-a(21) by yoh2's code
C. Rose, The Distribution of the Knight.
Eric Weisstein's World of Mathematics, Hamiltonian Path
Eric Weisstein's World of Mathematics, Knight Graph
|
|
FORMULA
|
a(n) = 2 * A169696(n). - Andrew Howroyd, Jul 01 2017
|
|
MATHEMATICA
|
Mathematica notebook available at: http://www.tri.org.au/knightframe.html
|
|
CROSSREFS
|
Cf. A169696, A079137, A083386, A165134.
Cf. A158074. - Eric W. Weisstein, Mar 13 2009
Sequence in context: A008433 A347803 A010111 * A037217 A109075 A187585
Adjacent sequences: A118064 A118065 A118066 * A118068 A118069 A118070
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Colin Rose, May 11 2006
|
|
EXTENSIONS
|
a(13) from Eric W. Weisstein, Mar 13 2009
a(14)-a(21) from Seiichi Manyama, Apr 25 2016
a(22)-a(28) from Andrew Howroyd, Jul 01 2017
|
|
STATUS
|
approved
|
|
|
|