%I #7 Jul 11 2015 11:06:52
%S 1,265721,75047458863267833,938093235790847912650094635296999121,
%T 2771420766426289313598405374054613260285749630619149892803,
%U 83546357082134777747819786589906868700938637689935705237433756853637190925073724793683
%N Numerator of Sum_{i=1..n} 1/(t(i)^t(i)) where t(i) = i-th 3-almost prime.
%C 3-almost prime analog of A117579. Semiprime analog of A117579 is A118056. Fractions are 1/16777216, 265721/4458050224128, 75047458863267833/1259085058409489202413568, 938093235790847912650094635296999121 / 15738563230118615030169600000000000000000000, 2771420766426289313598405374054613260285749630619149892803 / 46496637333593157266125580467610571799579852800000000000000000000.
%F a(n) = Numerator of Sum_{i=1..n} 1/(3almostprime(i)^3almostprime(i)).
%F a(n) = Numerator of Sum_{i=1..n} 1/(A014612(i)^A014612(i)).
%F a(n) = Numerator of Sum_{i=1..n} 1/A114967(n).
%e a(2) = 265721 because (1/A014612(1)^A014612(1)) + (1/A014612(2)^A014612(2))= (1/(8^8)) + (1/(12^12)) = (1/16777216) + (1/8916100448256) = 265721/4458050224128.
%Y Denominators = A118063. Cf. A001358, A014612, A051674, A114850, A114967, A117579, A118056.
%K easy,frac,nonn
%O 1,2
%A _Jonathan Vos Post_, Apr 11 2006