OFFSET
0,1
COMMENTS
REFERENCES
Jay Kappraff, "Beyond Measure, A Guided tour Through Nature, Myth and Number", World Scientific, 2002, p. 485 (Table 22.6b).
FORMULA
Diagonals are sequences as f(x), x=1,2,3; Lucas polynomials in the format: (2); (x + 2); (x^2 + 4x + 2); (x^3 + 6x^2 + 9x + 2); (x^4 + 8x^3 + 20x^2 + 16x + 2); (x^5 + 10x^4 + 35x^3 + 50x^2 + 25x + 2); ...
Diagonals of the triangle are binomial transforms of A118008 rows.
EXAMPLE
First few rows of the triangle:
2;
3, 2;
7, 4, 2;
18, 14, 5, 2;
47, 52, 23, 6, 2;
123, 194, 110, 34, 7, 2;
...
For example, 4th diagonal from the right (18, 52, 110, ...) = f(x), x=1,2,3, ...: x^3 + 6x^2 + 9x + 2.
(18, 52, 110, ...) = binomial transform of 4th row of A118008: (18, 34, 24, 6).
PROG
(PARI) TLucas(n, k) = binomial(n-k, k) + binomial(n-k-1, k-1) + (n==0); \\ A084534
pol(n) = Pol(vector(n+1, k, TLucas(2*n, k-1)));
T(n, k) = subst(pol(n-k), x, k+1);
trgT(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Aug 12 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Apr 09 2006
EXTENSIONS
More terms from Michel Marcus, Aug 12 2022
STATUS
approved