Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Mar 11 2021 18:03:04
%S 2,7,6,8,22,21,23,19,18,20,25,24,26,67,66,68,64,63,65,70,69,71,58,57,
%T 59,55,54,56,61,60,62,76,75,77,73,72,74,79,78,80,202,201,203,199,198,
%U 200,205,204,206,193,192,194,190,189,191,196,195,197,211,210,212,208,207
%N Negative part of inverse of A117966; write -n in balanced ternary and then replace (-1)'s with 2's.
%D D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, pp. 173-175
%H Indranil Ghosh, <a href="/A117968/b117968.txt">Table of n, a(n) for n = 1..6561</a>
%H Ken Levasseur, <a href="http://discretemath.org/ternary_number_system.html">The Balanced Ternary Number System</a>
%F a(1) = 2, a(3n) = 3a(n), a(3n+1) = 3a(n)+2, a(3n-1) = 3a(n)+1.
%e -7 in balanced ternary is (-1)1(-1), changing to 212 ternary is 23, so a(7)=23.
%o (Python)
%o def a(n):
%o if n==1: return 2
%o if n%3==0: return 3*a(n//3)
%o elif n%3==1: return 3*a((n - 1)//3) + 2
%o else: return 3*a((n + 1)//3) + 1
%o print([a(n) for n in range(1, 101)]) # _Indranil Ghosh_, Jun 06 2017
%Y Cf. A117966. a(n) = A004488(A117967(n)). Bisection of A140263. A140268 gives the same sequence in ternary.
%K base,nonn
%O 1,1
%A _Franklin T. Adams-Watters_, Apr 05 2006