%I #11 Feb 13 2022 23:15:51
%S 1,1,1,1,2,1,1,2,3,1,1,2,5,4,1,1,2,5,10,5,1,1,2,5,12,17,6,1,1,2,5,12,
%T 25,26,7,1,1,2,5,12,29,46,37,8,1,1,2,5,12,29,66,77,50,9,1,1,2,5,12,29,
%U 70,137,120,65,10,1
%N Triangle, row terms converge to the Pell sequence.
%F Antidiagonals of an array formed by taking binomial transforms of (1,0,0,0,...); (1,1,0,0,0,...); (1,1,2,0,0,0,...); where (1,1,2,2,4,4...) = A016116, the inverse binomial transform of the Pell sequence, A000129, starting 1,2,5,12,...
%e First few rows of the array:
%e 1, 1, 1, 1, 1, ...
%e 1, 2, 3, 4, 5, ...
%e 1, 2, 5, 10, 17, ...
%e 1, 2, 5, 12, 25, ...
%e 1, 2, 5, 12, 29, ...
%e ...
%e For example, (1, 2, 5, 10, 17, 26, 37, ...) = the binomial transform of (1, 1, 2, 0, 0, 0, ...).
%e First few rows of the triangle:
%e 1;
%e 1, 1;
%e 1, 2, 1;
%e 1, 2, 3, 1;
%e 1, 2, 5, 4, 1;
%e 1, 2, 5, 10, 5, 1;
%e 1, 2, 5, 12, 17, 6, 1;
%e 1, 2, 5, 12, 25, 26, 7, 1;
%e ...
%Y Cf. A000129, A016116.
%K nonn,tabl
%O 1,5
%A _Gary W. Adamson_, Apr 03 2006