Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 Feb 16 2024 11:27:19
%S 0,0,0,0,1,0,1,1,1,1,0,1,1,1,1,2,0,2,1,2,1,2,0,3,1,2,0,2,0,3,1,2,1,3,
%T 0,4,0,1,1,3,0,4,1,3,1,3,0,5,1,4,0,3,0,5,1,3,0,3,0,6,1,2,1,5,0,6,0,2,
%U 1,5,0,6,1,4,1,5,0,7,0,4,1,4,0,8,1,4,0,4,0,9,1,4,0,4,0,7,0,3,1,6,0,8,1,5,1
%N Number of partitions of n into 2 distinct primes.
%C Number of distinct rectangles with prime length and width such that L + W = n, W < L. For example, a(16) = 2; the two rectangles are 3 X 13 and 5 X 11. - _Wesley Ivan Hurt_, Oct 29 2017
%H T. D. Noe, <a href="/A117929/b117929.txt">Table of n, a(n) for n = 1..10000</a>
%F G.f.: Sum_{j>0} Sum_{i=1..j-1} x^(p(i)+p(j)), where p(k) is the k-th prime.
%F G.f.: A(x)^2/2 - A(x^2)/2 where A(x) = Sum_{p in primes} x^p. - _Geoffrey Critzer_, Nov 21 2012
%F a(n) = [x^n*y^2] Product_{i>=1} (1+x^prime(i)*y). - _Alois P. Heinz_, Nov 22 2012
%F a(n) = Sum_{i=2..floor((n-1)/2)} A010051(i) * A010051(n-i). - _Wesley Ivan Hurt_, Oct 29 2017
%e a(24) = 3 because we have [19,5], [17,7] and [13,11].
%p g:=sum(sum(x^(ithprime(i)+ithprime(j)),i=1..j-1),j=1..35): gser:=series(g,x=0,130): seq(coeff(gser,x,n),n=1..125);
%p # alternative
%p A117929 := proc(n)
%p local a,i,p ;
%p a := 0 ;
%p p := 2 ;
%p for i from 1 do
%p if 2*p >= n then
%p return a;
%p end if;
%p if isprime(n-p) then
%p a := a+1 ;
%p end if;
%p p := nextprime(p) ;
%p end do:
%p end proc:
%p seq(A117929(n),n=1..80) ; # _R. J. Mathar_, Oct 01 2021
%t l = {}; For[n = 1, n <= 1000, n++, c = 0; For[k = 1, Prime[k] < n/2, k++, If[PrimeQ[n - Prime[k]], c = c + 1] ]; AppendTo[l, c] ] l (* _Jake Foster_, Oct 27 2008 *)
%t Table[Count[IntegerPartitions[n,{2}],_?(AllTrue[#,PrimeQ]&&#[[1]]!= #[[2]] &)],{n,120}] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jul 26 2020 *)
%o (PARI) a(n)=my(s);forprime(p=2,(n-1)\2,s+=isprime(n-p));s \\ _Charles R Greathouse IV_, Feb 26 2014
%o (Python)
%o from sympy import sieve
%o from collections import Counter
%o from itertools import combinations
%o def aupton(max):
%o sieve.extend(max)
%o a = Counter(c[0]+c[1] for c in combinations(sieve._list, 2))
%o return [a[n] for n in range(1, max+1)]
%o print(aupton(105)) # _Michael S. Branicky_, Feb 16 2024
%Y Cf. A010051, A045917, A061358, A073610, A166081 (positions of 0), A077914 (positions of 2), A080862 (positions of 6).
%Y Column k=2 of A219180. - _Alois P. Heinz_, Nov 13 2012
%K nonn,easy
%O 1,16
%A _Emeric Deutsch_, Apr 03 2006