login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of palindromes (in base 6) below 6^n.
1

%I #12 Oct 27 2016 03:16:49

%S 5,10,40,70,250,430,1510,2590,9070,15550,54430,93310,326590,559870,

%T 1959550,3359230,11757310,20155390,70543870,120932350,423263230,

%U 725594110,2539579390,4353564670,15237476350,26121388030,91424858110,156728328190,548549148670

%N Number of palindromes (in base 6) below 6^n.

%H G. C. Greubel, <a href="/A117865/b117865.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,6,-6).

%F a(n) = 7*6^((n-1)/2)-2 (n odd), 2*6^(n/2)-2 (n even).

%F G.f.: 5*x*(x+1) / ((x-1)*(6*x^2-1)). - _Colin Barker_, Feb 15 2013

%t Table[If[OddQ[n], 7*6^((n - 1)/2) - 2, 2*6^(n/2) - 2], {n,25}] (* or *) LinearRecurrence[{1,6,-6},{5, 10, 40},25] (* _G. C. Greubel_, Oct 27 2016 *)

%Y Cf. A050250.

%K nonn,base,easy

%O 1,1

%A _Martin Renner_, May 02 2006

%E More terms from _Colin Barker_, Feb 15 2013