The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117621 Number of double-perfect partitions of [1..n]. 2
 0, 1, 1, 1, 1, 1, 3, 1, 3, 2, 3, 1, 7, 1, 3, 3, 6, 1, 8, 1, 7, 3, 3, 1, 17, 2, 3, 4, 7, 1, 13, 1, 12, 3, 3, 3, 24, 1, 3, 3, 17, 1, 13, 1, 7, 8, 3, 1, 40, 2, 8, 3, 7, 1, 20, 3, 17, 3, 3, 1, 41, 1, 3, 8, 24, 3, 13, 1, 7, 3, 13, 1, 68, 1, 3, 8, 7, 3, 13, 1, 40, 8, 3, 1, 41, 3, 3, 3, 17, 1, 44, 3, 7, 3, 3, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..20000 HoKyu Lee, Double perfect partitions, Discrete Math., 306 (2006), 519-525. FORMULA a(1)=0; a(n)=1 for n=2..5; a(n) = Sum_{m=2..n-1, m-1|n-1} a(m) for n >= 6. MAPLE f:=proc(n) option remember; local t1, m, nm1, mm1; nm1:=n-1; if n <= 1 then RETURN(0); elif n <= 5 then RETURN(1); else t1:=0; for m from 2 to n-1 do mm1:=m-1; if nm1 mod mm1 = 0 then t1:=t1+f(m); fi; od; RETURN(t1); fi; end; # second Maple program: with(numtheory): a:= proc(n) option remember; `if`(n<6, [0, 1\$4][n], add(a(k+1), k=divisors(n-1) minus {n-1})) end: seq(a(n), n=1..100); # Alois P. Heinz, Jul 09 2015 MATHEMATICA a[n_] := a[n] = If[n<6, {0, 1, 1, 1, 1}[[n]], Sum[a[k+1], {k, Divisors[n-1] ~Complement~ {n-1}}]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *) CROSSREFS Cf. A002033. Sequence in context: A317203 A229215 A123508 * A178055 A247856 A059660 Adjacent sequences: A117618 A117619 A117620 * A117622 A117623 A117624 KEYWORD nonn AUTHOR N. J. A. Sloane, Apr 07 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 20:54 EDT 2024. Contains 373608 sequences. (Running on oeis4.)