login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117621
Number of double-perfect partitions of [1..n].
2
0, 1, 1, 1, 1, 1, 3, 1, 3, 2, 3, 1, 7, 1, 3, 3, 6, 1, 8, 1, 7, 3, 3, 1, 17, 2, 3, 4, 7, 1, 13, 1, 12, 3, 3, 3, 24, 1, 3, 3, 17, 1, 13, 1, 7, 8, 3, 1, 40, 2, 8, 3, 7, 1, 20, 3, 17, 3, 3, 1, 41, 1, 3, 8, 24, 3, 13, 1, 7, 3, 13, 1, 68, 1, 3, 8, 7, 3, 13, 1, 40, 8, 3, 1, 41, 3, 3, 3, 17, 1, 44, 3, 7, 3, 3, 3
OFFSET
1,7
LINKS
HoKyu Lee, Double perfect partitions, Discrete Math., 306 (2006), 519-525.
FORMULA
a(1)=0; a(n)=1 for n=2..5; a(n) = Sum_{m=2..n-1, m-1|n-1} a(m) for n >= 6.
MAPLE
f:=proc(n) option remember; local t1, m, nm1, mm1; nm1:=n-1; if n <= 1 then RETURN(0); elif n <= 5 then RETURN(1); else t1:=0; for m from 2 to n-1 do mm1:=m-1; if nm1 mod mm1 = 0 then t1:=t1+f(m); fi; od; RETURN(t1); fi; end;
# second Maple program:
with(numtheory):
a:= proc(n) option remember; `if`(n<6, [0, 1$4][n],
add(a(k+1), k=divisors(n-1) minus {n-1}))
end:
seq(a(n), n=1..100); # Alois P. Heinz, Jul 09 2015
MATHEMATICA
a[n_] := a[n] = If[n<6, {0, 1, 1, 1, 1}[[n]], Sum[a[k+1], {k, Divisors[n-1] ~Complement~ {n-1}}]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A002033.
Sequence in context: A317203 A229215 A123508 * A178055 A247856 A059660
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 07 2006
STATUS
approved