The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117577 Equal divisions of the octave with nondecreasing consistency levels. 3
 1, 2, 3, 4, 5, 12, 19, 22, 26, 29, 41, 58, 72, 80, 94, 282, 311, 2554, 12348, 14842, 17461 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS An equal temperament is consistent at level N (odd integer) if all the intervals in the N-limit tonality diamond (set of ratios with odd factors of numerator and denominator not exceeding N) are approximated consistently, i.e. the composition of the approximations is the closest approximation of the composition. LINKS Tonalsoft Encyclopedia of Microtonal Music Theory, Consistency EXAMPLE 3-EDO is consistent through the 5 limit because 6/5, 5/4 and 4/3 map to 1 step and 3/2, 8/5 and 5/3 map to 2 steps and all the compositions work out, for example 6/5 * 5/4 = 3/2 and 1 step + 1 step = 2 steps. It is not consistent through the 7 limit because 8/7 and 7/6 both map to 1 step, but 8/7 * 7/6 = 4/3 also maps to 1 step. MAPLE with(padic, ordp): diamond := proc(n) # tonality diamond for odd integer n local i, j, s; s := {}; for i from 1 by 2 to n do for j from 1 by 2 to n do s := s union {r2d2(i/j)} od od; sort(convert(s, list)) end: r2d2 := proc(q) # octave reduction of rational number q 2^(-floor(evalf(ln(q)/ln(2))))*q end: plim := proc(q) # prime limit of rational number q local r, i, p; r := 1; i := 0; while not (r=q) do i := i+1; p := ithprime(i); r := r*p^ordp(q, p) od; i end: vai := proc(n, i) # mapping of i-th prime by patent val for n round(evalf(n*ln(ithprime(i))/ln(2))) end: via := proc(n, l) # the patent val for n of length l local i, v; for i from 1 to l do v[i] := vai(n, i) od; convert(convert(v, array), list) end: h := proc(n, q) # mapping of interval q by patent val n if q=1 then RETURN(0) fi; dotprod(vec(q), via(n, plim(q))) end: consis := proc(n, s) # consistency of edo n with respect to consonance set s local i; for i from 1 to nops(s) do if not h(n, s[i])=round(n*l2(s[i])) then RETURN(false) fi od; RETURN(true) end: consl := proc(n) # highest odd-limit consistency for edo n local c; c := 3; while consis(n, diamond(c)) do c := c+2 od; c-2 end: CROSSREFS Cf. A116474, A116475, A117578. Sequence in context: A093713 A057472 A333390 * A109849 A007662 A069469 Adjacent sequences:  A117574 A117575 A117576 * A117578 A117579 A117580 KEYWORD nonn AUTHOR Gene Ward Smith, Mar 29 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 8 08:24 EDT 2021. Contains 343658 sequences. (Running on oeis4.)