%I #7 Apr 21 2024 11:38:40
%S 5,13,109,641,757,4007,5387,7901,9349,11467,23297,33503,42193,57139,
%T 76343,100213,209597,252583,261631,373621,424231,432287,503593,507961,
%U 618593,699427,791489,825389,895243,943837,1212917,1455901,1573577
%N Cumulative sums of int(prime*e) which are primes.
%C Sometimes prime integer sums occur with consecutive primes, as 1601*e and 1607*e.
%F Beginning with the first prime, multiply by e, take integer, repeat, adding integer sums until a cumulative prime sum occurs. On the first prime, 2, the integer product is 5, prime. Continue to next integer product, add, until the next prime sum, 13.
%e The 4th cumulative sum of integer products is 641, prime.
%o (UBASIC)
%o 10 Ct=1
%o 20 B=nxtprm(B)
%o 22 E=#e
%o 30 C=int(B*E)
%o 40 D=D+C
%o 41 print Ct,B,C,D
%o 50 if D=prmdiv(D) then print D:stop
%o 55 Ct=Ct+1
%o 60 goto 20
%Y Cf. A117528 A117503.
%K easy,nonn
%O 1,1
%A _Enoch Haga_, Mar 25 2006