login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Palindromes which are divisible by the product and by the sum of their digits.
3

%I #16 Oct 12 2024 14:43:58

%S 1,2,3,4,5,6,7,8,9,111,2112,4224,13131,21112,21312,31113,42624,211112,

%T 234432,1113111,2111112,2114112,2118112,21122112,61111116,111111111,

%U 211121112,211242112,211262112,213141312,2111111112,2112332112,2114114112,2131221312

%N Palindromes which are divisible by the product and by the sum of their digits.

%C Intersection of A082232 and A117057.

%C Are there infinitely many terms that don't contain a 1? - _Derek Orr_, Aug 25 2014

%H Chai Wah Wu, <a href="/A117228/b117228.txt">Table of n, a(n) for n = 1..91</a>

%e 42624 is divisible by 4*2*6*2*4 and by 4+2+6+2+4.

%o (Python)

%o from operator import mul

%o from functools import reduce

%o from gmpy2 import t_mod, mpz

%o A117228 = sorted([mpz(n) for n in (str(x)+str(x)[::-1] for x in range(1, 10**8))

%o if not (n.count('0') or t_mod(mpz(n), sum((mpz(d) for d in n)))

%o or t_mod(mpz(n), reduce(mul, (mpz(d) for d in n))))]+

%o [mpz(n) for n in (str(x)+str(x)[-2::-1] for x in range(10**8))

%o if not (n.count('0') or t_mod(mpz(n), sum((mpz(d) for d in n)))

%o or t_mod(mpz(n), reduce(mul, (mpz(d) for d in n))))])

%o # _Chai Wah Wu_, Aug 25 2014

%o (PARI)

%o rev(n)=r="";d=digits(n);for(i=1,#d,r=concat(Str(d[i]),r));eval(r)

%o for(n=1,10^7,d=digits(n);if(rev(n)==n,p=prod(i=1,#d,d[i]);if(p&&n%p==0&&n%sumdigits(n)==0,print1(n,", ")))) \\ _Derek Orr_, Aug 25 2014

%Y Cf. A002113, A082232, A117057.

%K base,nonn

%O 1,2

%A _Giovanni Resta_, Apr 22 2006

%E More terms from _Chai Wah Wu_, Aug 22 2014