login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117184
Riordan array ((1+x)c(x^2)/sqrt(1-4x^2),xc(x^2)), c(x) the g.f. of A000108.
3
1, 1, 1, 3, 1, 1, 3, 4, 1, 1, 10, 4, 5, 1, 1, 10, 15, 5, 6, 1, 1, 35, 15, 21, 6, 7, 1, 1, 35, 56, 21, 28, 7, 8, 1, 1, 126, 56, 84, 28, 36, 8, 9, 1, 1, 126, 210, 84, 120, 36, 45, 9, 10, 1, 1, 462, 210, 330, 120, 165, 45, 55, 10, 11, 1, 1
OFFSET
0,4
COMMENTS
Row sums are A117186. Diagonal sums are A117187. Inverse is A117185.
FORMULA
Number triangle T(n,k)=C(n+1,(n+k)/2+1)(1+(-1)^(n-k))/2+C(n,(n+k)/2+1/2)(1-(-1)^(n-k))/2; Column k has e.g.f. Bessel_I(k,2x)+Bessel_I(k+1,2x)+Bessel_I(k+2,2x).
EXAMPLE
Triangle begins
1,
1, 1,
3, 1, 1,
3, 4, 1, 1,
10, 4, 5, 1, 1,
10, 15, 5, 6, 1, 1,
35, 15, 21, 6, 7, 1, 1,
35, 56, 21, 28, 7, 8, 1, 1
MATHEMATICA
c[x_] := (1 - Sqrt[1 - 4 x])/(2 x);
(* The function RiordanArray is defined in A256893. *)
RiordanArray[(1 + #) c[#^2]/Sqrt[1 - 4 #^2]&, # c[#^2]&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
CROSSREFS
Sequence in context: A051120 A114476 A260419 * A035690 A124794 A206496
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Mar 01 2006
STATUS
approved