OFFSET
1,2
COMMENTS
denote f(x)=nextprime(x) let A(p)={n/f(p*n)<f(p)*f(n)} and A(q)={n/f(q*n)<f(q)*f(n)} (q,p are prime) if q<p all terms of A(q) are in A(p). if B(p)={n/f(p*n)>f(p)*f(n)} I conjectured that when p --> infinity, A(p) = All composite positive integers when p --> infinity, B(p) = All primes numbers
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..2000
EXAMPLE
nextprime(5*4)=23 and nextprime(5)*nextprime(4)=5*5=25 then 4 is member because 23<15
MATHEMATICA
np5Q[n_]:=Module[{np=If[PrimeQ[n], n, NextPrime[n]]}, NextPrime[5n]<5np]; Select[ Range[100], np5Q] (* Harvey P. Dale, Jun 12 2022 *)
PROG
(PARI) for(i=1, 100, if(nextprime(5*i)<nextprime(5)*nextprime(i), print1(i, ", ")))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Apr 18 2006
STATUS
approved