Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Nov 25 2015 02:10:39
%S 0,1,1,5,13,173,3501,1420717,7343549869,24407739551034797,
%T 264579267653248177273154989,
%U 15107659029337673520218077770654501397966253,5900314832748922900613950065282124787723453785544193308390237364661677
%N Define binary strings S(0)=0, S(1)=1, S(n) = S(n-2)S(n-1); a(n) = S(n) converted to decimal.
%C Note that S(n) in general has leading zeros.
%F S(0) = 0, S(1) = 1, so S(2) = 01, a(2) = 1.
%F Use the substitution system 0->1 and 1->01. The values generated from a(0)=0 are 1, 01, 101, 01101, which in base 10 give the sequence. - _Jon Perry_, Feb 06 2011
%e S(3) = 01 (base 2) = 1 (base 10) so a(3) = 1.
%e S(4) = 101 (base 2) = 5 (base 10) so a(4) = 5.
%e S(5) = 01.101 = 01101 (base 2) = 13 (base 10) so a(5) = 13.
%e S(6) = 101.01101 = 10101101 (base 2) = 173 (base 10) so a(6) = 173.
%e S(7) = 01101.10101101 = 0110110101101 (base 2) = 3501 (base 10).
%t a[1] = 0; a[2] = 1; a[n_] := a[n] = If[ OddQ@n, FromDigits[ Join[ IntegerDigits[ a[n - 2], 2], IntegerDigits[ a[n - 1], 2]], 2], FromDigits[ Join[ IntegerDigits[ a[n - 2], 2], {0}, IntegerDigits[ a[n - 1], 2]], 2]]; Array[a, 13] (* _Robert G. Wilson v_, Apr 20 2006 *)
%Y Cf. A063896.
%K base,nonn
%O 0,4
%A Jordan Goldstein (jboymicro20X6(AT)aim.com), Apr 18 2006
%E More terms from _Robert G. Wilson v_, Apr 20 2006
%E Edited by _N. J. A. Sloane_, Apr 23 2006