login
A117062
Hexagonal numbers for which the sum of the digits is also a hexagonal number.
1
0, 1, 6, 15, 231, 276, 780, 861, 1653, 1770, 2850, 3003, 4371, 4560, 5995, 6216, 6441, 11175, 14028, 17205, 17578, 20301, 20706, 24090, 24531, 24976, 28203, 32640, 33153, 36856, 37401, 43071, 47278, 52975, 54946, 56953, 67528, 69751, 76636
OFFSET
0,3
LINKS
EXAMPLE
1770 is in the sequence because (1) it is a hexagonal number and (2)the sum of its digits 1+7+7+0=15 is also a hexagonal number.
MATHEMATICA
Module[{nn=400, hn}, hn=PolygonalNumber[6, Range[0, nn]]; Select[hn, MemberQ[ hn, Total[ IntegerDigits[#]]]&]] (* Harvey P. Dale, Apr 14 2022 *)
PROG
(PARI) isok(n) = ispolygonal(n, 6) && ispolygonal(sumdigits(n), 6); \\ Michel Marcus, Feb 26 2014
CROSSREFS
Cf. A000384.
Sequence in context: A013224 A013230 A306342 * A003155 A335578 A199095
KEYWORD
base,nonn
AUTHOR
Luc Stevens (lms022(AT)yahoo.com), Apr 16 2006
STATUS
approved