login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Palindromes which are divisible by the product of their digits.
3

%I #19 May 17 2021 04:54:22

%S 1,2,3,4,5,6,7,8,9,11,111,212,1111,2112,4224,11111,11711,13131,21112,

%T 21312,31113,42624,111111,211112,234432,1111111,1113111,2111112,

%U 2112112,2114112,2118112,11111111,21111112,21122112,61111116,111111111

%N Palindromes which are divisible by the product of their digits.

%C Are there infinitely many terms that do not contain a 1? - _Derek Orr_, Aug 26 2014

%H Chai Wah Wu, <a href="/A117057/b117057.txt">Table of n, a(n) for n = 1..221</a>

%e 4224 is in the sequence because (1) it is a palindrome, (2) the product of its digits is 4*2*2*4=64 and 4224 is divisible by 64.

%t fQ[n_] := Block[{id = IntegerDigits@n}, Reverse@id == id && Count[id, 0] == 0 && Mod[n, Times @@ id] == 0]; Do[ If[ fQ@n, Print@n], {n, 10^7}] (* _Robert G. Wilson v_ *)

%o (PARI) {m=120000000;for(n=1,m,k=n;rev=0;while(k>0,d=divrem(k,10);k=d[1];rev=10*rev+d[2]); if(n==rev,p=1;h=n;while(h>0,d=divrem(h,10);h=d[1];p=p*d[2]);if(p>0&&n%p==0,print1(n,","))))} \\ _Klaus Brockhaus_, Apr 17 2006

%o (Python)

%o from operator import mul

%o from functools import reduce

%o from gmpy2 import t_mod, mpz

%o A117057 = sorted([mpz(n) for n in (str(x)+str(x)[::-1] for x in range(1,10**6))

%o if not (n.count('0') or t_mod(mpz(n), reduce(mul,(mpz(d) for d in n))))]+

%o [mpz(n) for n in (str(x)+str(x)[-2::-1] for x in range(10**6))

%o if not (n.count('0') or t_mod(mpz(n), reduce(mul,(mpz(d) for d in n))))])

%o # _Chai Wah Wu_, Aug 26 2014

%Y Cf. A002113.

%K base,nonn

%O 1,2

%A Luc Stevens (lms022(AT)yahoo.com), Apr 16 2006

%E a(23) to a(36) from _Klaus Brockhaus_, Apr 17 2006