Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:45:24
%S 10,56,242,988,3974,15920,63706,254852,1019438,4077784,16311170,
%T 65244716,260978902,1043915648,4175662634,16702650580,66810602366,
%U 267242409512,1068969638098,4275878552444,17103514209830,68414056839376
%N a(n) = (35*2^((2*(3*n+2) + 2)/3) - 2*(3*n+2) - 46)/9.
%C Number of moves to solve Type 2 Zig-Zag puzzle.
%D Richard I. Hess, Compendium of Over 7000 Wire Puzzles, privately printed, 1991.
%D Richard I. Hess, Analysis of Ring Puzzles, booklet distributed at 13th International Puzzle Party, Amsterdam, Aug 20 1993.
%H Vincenzo Librandi, <a href="/A116971/b116971.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-9,4).
%F a(n) = 6*a(n-1)-9*a(n-2)+4*a(n-3). G.f.: 2*(5-2*x-2*x^2)/((1-x)^2*(1-4*x)). [_Colin Barker_, Sep 09 2012]
%t Table[(35*2^((2*(3*n + 2) + 2)/3) - 2*(3*n + 2) - 46)/9, {n, 0, 30}] (* _Stefan Steinerberger_, Apr 02 2006 *)
%t LinearRecurrence[{6,-9,4},{10,56,242},30] (* _Harvey P. Dale_, Sep 08 2021 *)
%o (Magma) [Round((35*2^((2*(3*n + 2) + 2)/3 ) - 2*(3*n + 2) - 46)/9): n in [0..25]] // _Vincenzo Librandi_, Sep 09 2012
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_, Apr 01 2006