login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116872
Subtriangle of generalized Catalan triangle CM(1,2) = A116880.
2
1, 3, 7, 13, 29, 41, 67, 147, 195, 247, 381, 829, 1069, 1277, 1545, 2307, 4995, 6339, 7379, 8451, 9975, 14589, 31485, 39549, 45373, 50733, 56829, 66057, 95235, 205059, 255747, 290691, 320707, 351187, 388099
OFFSET
1,2
COMMENTS
This triangle a(n,m) appears for the unnormalized one-point function T(n,n+m-1) in the totally asymmetric exclusion process (see A067323 for the references) for the (unphysical) values alpha=1, beta=2.
FORMULA
a(n,m)=A116880(n,m-1), n>=m>=1.
G.f. for column m>=1: (x^m)*(-(C2(m) + ((2^2)/x^(m-1))*(c(m-1,2*x)-1)/(2*x)) + 2*(C2(m-1) + (2/x^(m-1))*c(m-2,2*x))*c(2*x))/(1+x) where C2(n):=A064062(n), c(m,x):=sum(C(k)*x^k,k=0..m) with C(k):=A000108(k) (Catalan numbers) and c(x) is the g.f. of A000108.
CROSSREFS
Row sums give A116879.
Sequence in context: A089726 A093575 A080166 * A161490 A283587 A283705
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Mar 24 2006
STATUS
approved