login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116825
Number of permutations of length n which avoid the patterns 1243, 2341, 4321.
1
1, 2, 6, 21, 71, 204, 479, 951, 1687, 2764, 4269, 6299, 8961, 12372, 16659, 21959, 28419, 36196, 45457, 56379, 69149, 83964, 101031, 120567, 142799, 167964, 196309, 228091, 263577, 303044, 346779, 395079, 448251, 506612, 570489, 640219, 716149, 798636
OFFSET
1,2
FORMULA
G.f.: x*(1 - 3*x + 6*x^2 + x^3 + 11*x^4 + 8*x^5 - 13*x^6 - 15*x^7 + 16*x^8 - 2*x^9) / (1 - x)^5.
For n >= 6, a(n) = (5*n^4 - 16*n^3 + 43*n^2 - 752*n + 2388)/12. - Franklin T. Adams-Watters, Sep 16 2006
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, Sep 04 2022
MATHEMATICA
CoefficientList[Series[(1 - 3*x + 6*x^2 + x^3 + 11*x^4 + 8*x^5 - 13*x^6 - 15*x^7 + 16*x^8 - 2*x^9)/(1 - x)^5, {x, 0, 40}], x] (* Wesley Ivan Hurt, Sep 04 2022 *)
PROG
(PARI) Vec(x*(1 - 3*x + 6*x^2 + x^3 + 11*x^4 + 8*x^5 - 13*x^6 - 15*x^7 + 16*x^8 - 2*x^9) / (1 - x)^5 + O(x^50)) \\ Colin Barker, Oct 24 2017
CROSSREFS
Sequence in context: A294719 A116795 A116766 * A116767 A116759 A116835
KEYWORD
nonn,easy
AUTHOR
Lara Pudwell, Feb 26 2006
STATUS
approved