login
A116820
Number of permutations of length n which avoid the patterns 2341, 3241, 4213.
1
1, 2, 6, 21, 75, 264, 914, 3127, 10621, 35932, 121324, 409301, 1380417, 4655382, 15700590, 52954137, 178609067, 602449564, 2032105066, 6854506171, 23121097405, 77990499392, 263072412420, 887378656761, 2993247393297, 10096624106970, 34057260581510
OFFSET
1,2
LINKS
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 2 No 168 and 169.
FORMULA
G.f.: x*(1 - 6*x + 13*x^2 - 10*x^3 + x^4) / ((1 - x)*(1 - 7*x + 16*x^2 - 13*x^3 + x^4)).
a(n) = 8*a(n-1) - 23*a(n-2) + 29*a(n-3) - 14*a(n-4) + a(n-5) for n>5. - Colin Barker, Oct 18 2017
PROG
(PARI) Vec(x*(1 - 6*x + 13*x^2 - 10*x^3 + x^4) / ((1 - x)*(1 - 7*x + 16*x^2 - 13*x^3 + x^4)) + O(x^30)) \\ Colin Barker, Oct 18 2017
CROSSREFS
Sequence in context: A116746 A116806 A116736 * A369626 A294815 A116751
KEYWORD
nonn,easy
AUTHOR
Lara Pudwell, Feb 26 2006
STATUS
approved