login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116796
Number of permutations of length n which avoid the patterns 2314, 3241, 4132.
1
1, 2, 6, 21, 72, 236, 745, 2286, 6866, 20285, 59156, 170712, 488401, 1387226, 3916062, 10996581, 30737760, 85573316, 237387961, 656451270, 1810142186, 4978643597, 13661617196, 37409025456, 102238082977, 278920277426, 759695287350, 2066068144821
OFFSET
1,2
FORMULA
G.f.: x*(1 - 5*x + 9*x^2 - 4*x^3) / ((1 - x)*(1 - 3*x + x^2)^2).
From Colin Barker, Oct 19 2017: (Start)
a(n) = (1/25)*(2^(-n)*(25*2^n + sqrt(5)*(3-sqrt(5))^n - sqrt(5)*(3+sqrt(5))^n + 10*((3-sqrt(5))^n + (3+sqrt(5))^n)*n)).
a(n) = 7*a(n-1) - 17*a(n-2) + 17*a(n-3) - 7*a(n-4) + a(n-5) for n>5.
(End)
a(n) = 1 + (2*(n - 1)*Lucas(2*(n - 1)) - Fibonacci(2*(n - 1)))/5. - Ehren Metcalfe, Oct 22 2017
MATHEMATICA
LinearRecurrence[{7, -17, 17, -7, 1}, {1, 2, 6, 21, 72}, 80] (* Vincenzo Librandi, Oct 22 2017 *)
PROG
(PARI) Vec(x*(1 - 5*x + 9*x^2 - 4*x^3) / ((1 - x)*(1 - 3*x + x^2)^2) + O(x^40)) \\ Colin Barker, Oct 19 2017
(Magma) [1+(2*(n-1)*Lucas(2*(n-1))-Fibonacci(2*(n-1)))/5: n in [1..30]]; // Vincenzo Librandi, Oct 22 2017
CROSSREFS
Sequence in context: A116758 A116838 A116836 * A116779 A116737 A360153
KEYWORD
nonn,easy
AUTHOR
Lara Pudwell, Feb 26 2006
STATUS
approved