%I #9 Nov 08 2017 08:42:25
%S 1,2,6,21,73,241,757,2288,6724,19365,54959,154303,429733,1189430,
%T 3276306,8990037,24591349,67093357,182653717,496322396,1346450176,
%U 3647459397,9868036571,26666447611,71984395333,194127819746
%N Number of permutations of length n which avoid the patterns 1342, 2314, 4213.
%H D. Callan, T. Mansour, <a href="http://arxiv.org/abs/1705.00933">Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns</a>, arXiv:1705.00933 [math.CO] (2017), Table 2 No 95.
%H Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/maple/webbook/bookmain.html">Systematic Studies in Pattern Avoidance</a>, 2005.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (10,-40,82,-92,56,-17,2).
%F G.f.: A(x) = -{(2x^6-13x^5+31x^4-41x^3+26x^2-8x+1)x}/{(2x-1)(x^2-3x+1)^2(x-1)^2}
%K nonn,easy
%O 1,2
%A _Lara Pudwell_, Feb 26 2006