%I #9 Nov 08 2017 09:57:06
%S 1,2,6,21,75,263,904,3066,10324,34652,116179,389443,1305592,4377595,
%T 14679474,49227937,165091510,553658600,1856778673,6226985606,
%U 20883103968,70034469898,234870470627,787671056978,2641565114181
%N Number of permutations of length n which avoid the patterns 1432, 2314, 2413.
%H D. Callan, T. Mansour, <a href="http://arxiv.org/abs/1705.00933">Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns</a>, arXiv:1705.00933 [math.CO] (2017), Table 2 No 167.
%H Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/maple/webbook/bookmain.html">Systematic Studies in Pattern Avoidance</a>, 2005.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (7,-17,18,-7,1)
%F G.f.: A(x) = -{(x^4-5x^3+9x^2-5x+1)x}/{(x^5-7x^4+18x^3-17x^2+7x-1)}
%K nonn,easy
%O 1,2
%A _Lara Pudwell_, Feb 26 2006