login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of length n which avoid the patterns 1342, 4213.
1

%I #17 Sep 04 2022 22:17:23

%S 1,2,6,22,86,338,1318,5106,19718,76066,293398,1131794,4366374,

%T 16846018,64995254,250765298,967503814,3732821922,14401956182,

%U 55565542354,214382633062,827129764994,3191227078902,12312373271986,47503525349126,183277819294562

%N Number of permutations of length n which avoid the patterns 1342, 4213.

%H Colin Barker, <a href="/A116707/b116707.txt">Table of n, a(n) for n = 1..1000</a>

%H Darla Kremer and Wai Chee Shiu, <a href="http://dx.doi.org/10.1016/S0012-365X(03)00042-6">Finite transition matrices for permutations avoiding pairs of length four patterns</a>, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.

%H Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/maple/webbook/bookmain.html">Systematic Studies in Pattern Avoidance</a>, 2005.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes#Classes_avoiding_two_patterns_of_length_4">Permutation classes avoiding two patterns of length 4</a>.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (7,-16,16,-4).

%F G.f.: -x*(x-1)*(2*x-1)^2 / (4*x^4-16*x^3+16*x^2-7*x+1).

%F a(n) = 7*a(n-1) - 16*a(n-2) + 16*a(n-3) - 4*a(n-4) for n>3. - _Colin Barker_, Oct 20 2017

%t CoefficientList[Series[-(x - 1)*(2*x - 1)^2/(4*x^4 - 16*x^3 + 16*x^2 - 7*x + 1), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Sep 04 2022 *)

%o (PARI) Vec(x*(1 - x)*(1 - 2*x)^2 / (1 - 7*x + 16*x^2 - 16*x^3 + 4*x^4) + O(x^40)) \\ _Colin Barker_, Oct 20 2017

%K nonn,easy

%O 1,2

%A _Lara Pudwell_, Feb 26 2006