login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116696
Take an n X n square grid of points in the plane; a(n) = number of non-isomorphic ways to divide the points into two sets using a straight line.
1
1, 3, 6, 15, 29, 59, 99, 170, 262, 401, 570, 816, 1103, 1499, 1956, 2534, 3195, 4041, 4980, 6153, 7448, 8985, 10674, 12704, 14899, 17473, 20262, 23467, 26914, 30905, 35138, 39996, 45191, 50997
OFFSET
1,2
COMMENTS
The line may not pass through any point. This is the "unlabeled" version - rotations and reflections are taken into account. See A114043 for the "labeled" version.
FORMULA
if n is even, then a(n) = (A114043(n) + 6n + 3 + 2 A099957(n/2))/8 if n is odd, then a(n) = (A114043(n) + 6n + 1)/8
EXAMPLE
Examples: the two sets are indicated by X's and o's.
a(2) = 3:
XX oX oo
XX XX XX
--------------------
a(3) = 7:
XXX oXX ooX ooo ooX ooo
XXX XXX XXX XXX oXX oXX
XXX XXX XXX XXX XXX XXX
--------------------
a(4)= 15:
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXo XXXo XXXo XXoo XXoo
XXXX XXXo XXoo Xooo oooo XXoo Xooo oooo Xooo oooo
----
XXXX XXXX XXXX XXXX XXXX
XXXo XXXX XXXX XXXo XXXo
XXoo Xooo oooo Xooo XXoo
Xooo oooo oooo oooo oooo
CROSSREFS
Sequence in context: A226736 A066708 A034464 * A000220 A244705 A319643
KEYWORD
nonn,more
AUTHOR
David Applegate, Feb 23 2006
STATUS
approved