Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 May 13 2015 05:10:18
%S 1,0,1,1,0,1,1,1,0,1,1,2,0,2,1,1,1,4,0,2,2,2,3,4,0,1,3,4,3,0,3,7,1,1,
%T 5,4,6,0,4,10,2,2,6,7,9,0,7,12,5,3,7,13,11,0,1,8,18,7,5,0,11,15,18,1,
%U 1,10,25,11,8,0,13,23,24,2,2,15,32,16,13,0,16,33,32,5,3,18,43,24,19,0,23,40
%N Triangle read by rows: T(n,k) is the number of partitions of n into odd parts and having exactly k parts that appear exactly once (n>=0, k>=0).
%C Row n contains 1+floor(sqrt(n)) terms (at the end of certain rows there is an extra 0). Row sums yield A000009. T(n,0)=A097242(n). Sum(k*T(n,k), k>=0)=A116665(n).
%H Alois P. Heinz, <a href="/A116664/b116664.txt">Table of n, a(n) for n = 0..600, flattened</a>
%F G.f.: product(1+tx^(2j-1)+x^(4j-2)/(1-x^(2j-1)), j=1..infinity).
%e T(10,2) = 3 because the only partitions of 10 into odd parts and having exactly 2 parts that appear only once are [9,1],[7,3] and [5,3,1,1].
%e Triangle starts:
%e 1;
%e 0, 1;
%e 1, 0;
%e 1, 1;
%e 1, 0, 1;
%e 1, 2, 0;
%e 2, 1, 1;
%e 1, 4, 0;
%p g:=product(1+t*x^(2*j-1)+x^(2*(2*j-1))/(1-x^(2*j-1)),j=1..30): gser:=simplify(series(g,x=0,30)): P[0]:=1: for n from 1 to 25 do P[n]:=coeff(gser,x^n) od: for n from 0 to 25 do seq(coeff(P[n],t,j),j=0..floor(sqrt(n))) od; # yields sequence in triangular form, with one extra 0 in some rows
%p # second Maple program:
%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p expand(add(b(n-i*j, i-2)*`if`(j=1, x, 1), j=0..n/i))))
%p end:
%p T:= n-> (p-> seq(coeff(p, x, k), k=0..floor(sqrt(n))))
%p (b(n, n-irem(n+1, 2))):
%p seq(T(n), n=0..25); # _Alois P. Heinz_, Mar 16 2014
%t b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Expand[Sum[b[n-i*j, i-2]*If[j == 1, x, 1], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, k], {k, 0, Floor[Sqrt[n]]}]][b[n, n-Mod[n+1, 2]]]; Table[T[n], {n, 0, 25}] // Flatten (* _Jean-François Alcover_, May 13 2015, after _Alois P. Heinz_ *)
%Y Cf. A000009, A097242, A116665.
%K nonn,tabf
%O 0,12
%A _Emeric Deutsch_, Feb 22 2006