Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 May 09 2017 11:14:08
%S 1,5,7,19,11,23,29,65,19,31,37,73,49,85,103,211,35,47,53,89,65,101,
%T 119,227,89,125,143,251,179,287,341,665,67,79,85,121,97,133,151,259,
%U 121,157,175,283,211,319,373,697,169,205,223,331,259,367,421,745,331
%N a(n) = A116623(A059893(n)).
%C Viewed as a binary tree, this is (1); 5; 7,19; 11,23,29,65; ... Cf. A116623.
%C If we treat (2n+1) as a binary number with the nonzero bits numbered (highest bit first) from 0..k and the regular binary place value of each nonzero bit numbered from b(0) to b(k) then a(n) = 3^0 * b(0) + 3^1 * b(1) + .. + 3^k. For instance, if n=6 then 2n+1 = 13, which is equal to 8+4+1 or 1101 base(2); and a(n)=29 which is 8*1 + 4*3 + 1*9. - _Joe Slater_, Jan 23 2016
%H Robert Israel, <a href="/A116640/b116640.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%F a(A000225(n)) = A001047(n+1).
%F For n>= 1 a(A000079(n)) = A062709(n+1).
%F From _Joe Slater_, Jan 19 2016: (Start)
%F a(0) = 1,
%F a(n) = 3*a(floor(n/2)) - 2*a(floor(n/4)) for n=0 (mod 4) and n>0,
%F a(n) = 6*a(floor(n/4)) - a(floor(n/2)) for n=1 (mod 4),
%F a(n) = a(floor(n/2)) + 2*a(floor(n/4)) for n=2 (mod 4),
%F a(n) = 5*a(floor(n/2)) - 6*a(floor(n/4)) for n=3 (mod 4)
%F (End)
%F a(0) = 1, a(n) = 2*a(floor(n/2)) - A033999(n) * A048883(n) for n>0. -
%F _Joe Slater_, Jan 22 2016
%p a:= proc(n) option remember; piecewise(
%p n mod 4 = 0, 3*procname(n/2) - 2*procname(n/4),
%p n mod 4 = 1, 6*procname((n-1)/4) - procname((n-1)/2),
%p n mod 4 = 2, procname(n/2) + 2*procname((n-2)/4),
%p 5*procname((n-1)/2) - 6*procname((n-3)/4))
%p end proc:
%p a(0):= 1:
%p map(a, [$0..100]); # _Robert Israel_, Jan 19 2016
%t a[n_] := a[n] = Switch[Mod[n, 4], 0, 3a[Floor[n/2]] - 2a[Floor[n/4]], 1, 6a[Floor[n/4]] - a[Floor[n/2]], 2, a[Floor[n/2]] + 2a[Floor[n/4]], 3, 5a[Floor[n/2]] - 6a[Floor[n/4]]]; a[0]=1; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Feb 28 2016 *)
%o (PARI) a(n) = if(n==0, return(1)); 2*a(n\2) - (-1)^n * 3^hammingweight(n) \\ _Charles R Greathouse IV_, Jan 21 2016
%o (PARI) a(n) = my(p=2*n+1,v=vecextract(vector(#binary(p),j,2^(j-1)),p));sum(i=0,#v-1,3^i*v[#v-i]) \\ _Joe Slater_, May 09 2017
%Y Cf. A000079, A000225, A001047, A062709.
%K nonn,base,tabf
%O 0,2
%A _Antti Karttunen_, Feb 20 2006. Proposed by Pierre Lamothe (plamothe(AT)aei.ca), May 21 2004.