login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive integers n such that 13^n == 2 (mod n).
17

%I #34 Apr 10 2020 21:43:08

%S 1,11,140711,863101,1856455,115602923,566411084209,706836043419179

%N Positive integers n such that 13^n == 2 (mod n).

%C No other terms below 10^16. - _Max Alekseyev_, Nov 02 2018

%t Select[Range[1, 500000], Mod[13^#, #] == 2 &] (* _G. C. Greubel_, Nov 19 2017 *)

%t Join[{1}, Select[Range[5000000], PowerMod[13, #, #] == 2 &]] (* _Robert Price_, Apr 10 2020 *)

%o (PARI) isok(n) = Mod(13, n)^n == 2; \\ _Michel Marcus_, Nov 19 2017

%Y Cf. A116609.

%Y Solutions to b^n == 2 (mod n): A015919 (b=2), A276671 (b=3), A130421 (b=4), A124246 (b=5), A277401 (b=7), this sequence (b=13), A333269 (b=17).

%Y Solutions to 13^n == k (mod n): A015963 (k=-1), A116621 (k=1), this sequence (k=2), A116629 (k=3), A116630 (k=4), A116611 (k=5), A116631 (k=6), A116632 (k=7), A295532 (k=8), A116636 (k=9), A116620 (k=10), A116638 (k=11), A116639 (k=15).

%K more,nonn

%O 1,2

%A _Zak Seidov_, Feb 19 2006

%E One more term from _Ryan Propper_, Jun 11 2006

%E Term a(1)=1 is prepended and a(7)-a(8) are added by _Max Alekseyev_, Jun 29 2011