login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest prime p such that p == 1 (mod prime(n)) and not p == 1 (mod k) for 2 < k < prime(n).
2

%I #10 Mar 29 2017 19:44:09

%S 3,7,11,239,23,443,647,1103,47,59,2543,3923,83,9203,6299,107,7907,

%T 8663,11927,14627,12119,15959,167,179,20759,20807,23279,23327,28559,

%U 227,37847,263,43019,54767,53939,54059,54323,54443,66467,347,359,69143,383

%N Smallest prime p such that p == 1 (mod prime(n)) and not p == 1 (mod k) for 2 < k < prime(n).

%C a(n) > 2*prime(n) for n > 1.

%C a(n) = 2*prime(n)+1 if prime(n) is in A005384. Otherwise, a(n) > 2*prime(n)^2+1 for n > 1. - _Robert Israel_, Mar 29 2017

%H Robert Israel, <a href="/A116605/b116605.txt">Table of n, a(n) for n = 1..408</a>

%e a(1) = 3 since prime(1) = 2 and 3 == 1 (mod 2).

%e a(4) = 239 since prime(4) = 7, 239 == 1 (mod 7) and for each of the primes q smaller than 239 with q == 1 (mod 7) there is a k (2 < k < 7) such that q == 1 (mod k): 29 == 1 (mod 4), 43 == 1 (mod 6), 71 == 1 (mod 5), 113 == 1 (mod 4), 127 == 1 (mod 3), 197 == 1 (mod 4), 211 == 1 (mod 5), whereas 239 == 2 (mod 3), 3 (mod 4), 4 (mod 5), 5

%e (mod 6).

%p V:= {seq(4*i+2,i=1..10^5)}: A[1]:= 3:

%p for n from 2 do

%p pn:= ithprime(n);

%p R:= select(t -> t mod pn = 0, V);

%p found:= false;

%p for r in R do

%p if isprime(r+1) then

%p found:= true;

%p A[n]:= r+1;

%p break

%p fi

%p od;

%p if not found then break fi;

%p V:= V minus R;

%p od:

%p seq(A[i],i=1..n-1); # _Robert Israel_, Mar 29 2017

%Y Cf. A034694, A116606.

%K nonn

%O 1,1

%A _Klaus Brockhaus_, Feb 19 2006