login
A116580
square resultant of a complex prime genus function based on modulo 12 genus and modulo six genus functions.
0
3, 3, 0, 4, 3, 16, 15, 35, 34, 62, 98, 142, 141, 193, 192, 252, 319, 396, 479, 478, 571, 670, 669, 777, 1017, 1016, 1148, 1147, 1288, 1287, 1754, 1753, 1925, 2105, 2292, 2488, 2692, 2903, 2902, 3122, 3349, 3586, 3828, 4081, 4080, 4340, 4883, 5458, 5457
OFFSET
0,1
FORMULA
g[1] = 1; g[2] = 1; g[n_] := (Prime[n] - 13)/12 /; Mod[Prime[n], 12] - 1 == 0 g[n_] := (Prime[n] - 5)/12 /; Mod[Prime[n], 12] - 5 == 0 g[n_] := (Prime[n] - 7)/12 /; Mod[Prime[n], 12] - 7 == 0 g[n_] := (Prime[n] + 1)/12 /; Mod[Prime[n], 12] - 11 == 0 h[1] = 1; h[2] = 1; h[n_] := (Prime[n])/6 /; Mod[Prime[n], 6] == 0 h[n_] := (Prime[n] - 1)/6 /; Mod[Prime[n], 6] - 1 == 0 h[n_] := (Prime[n] - 2)/6 /; Mod[Prime[n], 6] - 2 == 0 h[n_] := (Prime[n] - 3)/6 /; Mod[Prime[n], 6] - 3 == 0 h[n_] := (Prime[n] - 4)/6 /; Mod[Prime[n], 6] - 4 == 0 h[n_] := (Prime[n] - 5)/6 /; Mod[Prime[n], 6] - 5 == 0 c[n_]=Sqrt[2]*(h[n]-Sqrt[g[n]-h[n]^2]/Sqrt[2]) cstar[n_]= Conjugate[c[n]] a(n) = c[n]*cstar[n]
MATHEMATICA
g[1] = 1; g[2] = 1; g[n_] := (Prime[n] - 13)/12 /; Mod[Prime[n], 12] - 1 == 0 g[n_] := (Prime[n] - 5)/12 /; Mod[Prime[n], 12] - 5 == 0 g[n_] := (Prime[n] - 7)/12 /; Mod[Prime[n], 12] - 7 == 0 g[n_] := (Prime[n] + 1)/12 /; Mod[Prime[n], 12] - 11 == 0 h[1] = 1; h[2] = 1; h[n_] := (Prime[n])/6 /; Mod[Prime[n], 6] == 0 h[n_] := (Prime[n] - 1)/6 /; Mod[Prime[n], 6] - 1 == 0 h[n_] := (Prime[n] - 2)/6 /; Mod[Prime[n], 6] - 2 == 0 h[n_] := (Prime[n] - 3)/6 /; Mod[Prime[n], 6] - 3 == 0 h[n_] := (Prime[n] - 4)/6 /; Mod[Prime[n], 6] - 4 == 0 h[n_] := (Prime[n] - 5)/6 /; Mod[Prime[n], 6] - 5 == 0 c[n_]=Sqrt[2]*(h[n]-Sqrt[g[n]-h[n]^2]/Sqrt[2]) cstar[n_]= Conjugate[c[n]] a=Table[ExpandAll[c[n]*cstar[n]], {n, 1, 50}]
CROSSREFS
Sequence in context: A245256 A347149 A140686 * A096439 A377143 A256119
KEYWORD
nonn,uned,obsc
AUTHOR
Roger L. Bagula, Mar 21 2006
STATUS
approved