login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116580 square resultant of a complex prime genus function based on modulo 12 genus and modulo six genus functions. 0
3, 3, 0, 4, 3, 16, 15, 35, 34, 62, 98, 142, 141, 193, 192, 252, 319, 396, 479, 478, 571, 670, 669, 777, 1017, 1016, 1148, 1147, 1288, 1287, 1754, 1753, 1925, 2105, 2292, 2488, 2692, 2903, 2902, 3122, 3349, 3586, 3828, 4081, 4080, 4340, 4883, 5458, 5457 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..48.

FORMULA

g[1] = 1; g[2] = 1; g[n_] := (Prime[n] - 13)/12 /; Mod[Prime[n], 12] - 1 == 0 g[n_] := (Prime[n] - 5)/12 /; Mod[Prime[n], 12] - 5 == 0 g[n_] := (Prime[n] - 7)/12 /; Mod[Prime[n], 12] - 7 == 0 g[n_] := (Prime[n] + 1)/12 /; Mod[Prime[n], 12] - 11 == 0 h[1] = 1; h[2] = 1; h[n_] := (Prime[n])/6 /; Mod[Prime[n], 6] == 0 h[n_] := (Prime[n] - 1)/6 /; Mod[Prime[n], 6] - 1 == 0 h[n_] := (Prime[n] - 2)/6 /; Mod[Prime[n], 6] - 2 == 0 h[n_] := (Prime[n] - 3)/6 /; Mod[Prime[n], 6] - 3 == 0 h[n_] := (Prime[n] - 4)/6 /; Mod[Prime[n], 6] - 4 == 0 h[n_] := (Prime[n] - 5)/6 /; Mod[Prime[n], 6] - 5 == 0 c[n_]=Sqrt[2]*(h[n]-Sqrt[g[n]-h[n]^2]/Sqrt[2]) cstar[n_]= Conjugate[c[n]] a(n) = c[n]*cstar[n]

MATHEMATICA

g[1] = 1; g[2] = 1; g[n_] := (Prime[n] - 13)/12 /; Mod[Prime[n], 12] - 1 == 0 g[n_] := (Prime[n] - 5)/12 /; Mod[Prime[n], 12] - 5 == 0 g[n_] := (Prime[n] - 7)/12 /; Mod[Prime[n], 12] - 7 == 0 g[n_] := (Prime[n] + 1)/12 /; Mod[Prime[n], 12] - 11 == 0 h[1] = 1; h[2] = 1; h[n_] := (Prime[n])/6 /; Mod[Prime[n], 6] == 0 h[n_] := (Prime[n] - 1)/6 /; Mod[Prime[n], 6] - 1 == 0 h[n_] := (Prime[n] - 2)/6 /; Mod[Prime[n], 6] - 2 == 0 h[n_] := (Prime[n] - 3)/6 /; Mod[Prime[n], 6] - 3 == 0 h[n_] := (Prime[n] - 4)/6 /; Mod[Prime[n], 6] - 4 == 0 h[n_] := (Prime[n] - 5)/6 /; Mod[Prime[n], 6] - 5 == 0 c[n_]=Sqrt[2]*(h[n]-Sqrt[g[n]-h[n]^2]/Sqrt[2]) cstar[n_]= Conjugate[c[n]] a=Table[ExpandAll[c[n]*cstar[n]], {n, 1, 50}]

CROSSREFS

Sequence in context: A260636 A245256 A140686 * A096439 A256119 A217552

Adjacent sequences:  A116577 A116578 A116579 * A116581 A116582 A116583

KEYWORD

nonn,uned,obsc

AUTHOR

Roger L. Bagula, Mar 21 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 17:29 EST 2020. Contains 332209 sequences. (Running on oeis4.)