login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = C( C(n,2), n).
50

%I #32 Jul 02 2024 14:49:09

%S 1,0,0,1,15,252,5005,116280,3108105,94143280,3190187286,119653565850,

%T 4922879481520,220495674290430,10682005290753420,556608279578340080,

%U 31044058215401404845,1845382436487682488000,116475817125419611477660,7779819801401934344268210

%N a(n) = C( C(n,2), n).

%C a(n) is the number of simple labeled graphs with n nodes and n edges. - _Geoffrey Critzer_, Nov 02 2014

%C These graphs are not necessarily covering, but the covering case is A367863, unlabeled A006649, and the unlabeled version is A001434. - _Gus Wiseman_, Dec 22 2023

%H Alois P. Heinz, <a href="/A116508/b116508.txt">Table of n, a(n) for n = 0..370</a>

%F a(n) ~ exp(n - 2) * n^(n - 1/2) / (sqrt(Pi) * 2^(n + 1/2)). - _Vaclav Kotesovec_, May 19 2020

%e a(5) = C(C(5,2),5) = C(10,5) = 252.

%p a:= n-> binomial(binomial(n, 2), n):

%p seq(a(n), n=0..20);

%t nn = 18; f[x_, y_] :=

%t Sum[(1 + y)^Binomial[n, 2] x^n/n!, {n, 1, nn}]; Table[

%t n! Coefficient[Series[f[x, y], {x, 0, nn}], x^n y^n], {n, 1, nn}] (* _Geoffrey Critzer_, Nov 02 2014 *)

%t Table[Length[Subsets[Subsets[Range[n],{2}],{n}]],{n,0,5}] (* _Gus Wiseman_, Dec 22 2023 *)

%o (Sage) [(binomial(binomial(n+2,n),n+2)) for n in range(-1, 17)] # _Zerinvary Lajos_, Nov 30 2009

%o (Magma) [0] cat [(Binomial(Binomial(n+2, n), n+2)): n in [0..20]]; // _Vincenzo Librandi_, Nov 03 2014

%o (Python)

%o from math import comb

%o def A116508(n): return comb(n*(n-1)>>1,n) # _Chai Wah Wu_, Jul 02 2024

%Y Cf. A084546.

%Y The unlabeled version is A001434, covering case A006649.

%Y The connected case is A057500, unlabeled A001429.

%Y For set-systems we have A136556, covering case A054780.

%Y The covering case is A367863.

%Y A006125 counts graphs, A000088 unlabeled.

%Y A006129 counts covering graphs, A002494 unlabeled.

%Y A133686 counts graphs satisfying a strict AOC, connected A129271.

%Y A367867 counts graphs contradicting a strict AOC, connected A140638.

%Y Cf. A001187, A003465, A143543, A305000, A367916, A367917.

%K easy,nonn

%O 0,5

%A Christopher Hanusa (chanusa(AT)math.binghamton.edu), Mar 21 2006

%E a(0)=1 prepended by _Alois P. Heinz_, Feb 02 2024