login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that T(n) + T(n+1) + ... + T(n+10) is a square, where T(m) = A000217(m) is the m-th triangular number.
11

%I #33 Mar 06 2022 09:02:06

%S 13,46,229,1608,7335,20304,92391,635710,2892133,8001886,36403981,

%T 250470288,1139495223,3152724936,14343078279,98684659918,448958227885,

%U 1242165625054,5651136440101,38881505539560,176888402293623,489410103548496

%N Numbers n such that T(n) + T(n+1) + ... + T(n+10) is a square, where T(m) = A000217(m) is the m-th triangular number.

%C Positive integers n such that 11*n^2 + 121*n + 440 = 2*m^2 for some integer m. - _Max Alekseyev_, Jan 20 2010

%H Vincenzo Librandi, <a href="/A116476/b116476.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,394,-394,0,0,-1,1).

%F For n>8, a(n) = 394*a(n-4) - a(n-8) + 2156. - _Max Alekseyev_, Jan 20 2010

%F G.f.: x*(2*x^8+7*x^7+15*x^6+33*x^5-605*x^4-1379*x^3-183*x^2-33*x-13)/((x-1)*(x^8-394*x^4+1)). - _Colin Barker_, Nov 22 2012

%e 13 belongs to this sequence since T(13) + T(14) + ... + T(23) = 91 + 105 + 120 + 136 + 153 + 171 + 190 + 210 + 231 + 253 + 276 = 1936 = 44^2.

%t For[n = 1, n < 100000, n++, If[IntegerQ[Sqrt[Sum[i*(i+1)/2, {i, n, n + 10}]]], Print[n]]] (* _Stefan Steinerberger_, Mar 30 2006 *)

%t LinearRecurrence[{1,0,0,394,-394,0,0,-1,1},{13,46,229,1608,7335,20304,92391,635710,2892133},30] (* _Harvey P. Dale_, Sep 01 2017 *)

%Y Cf. A176541, A176542, A165517, A202391

%K nonn,easy

%O 1,1

%A Edward Fedorovich (chipramy(AT)012.net.il), Mar 29 2006

%E Extended by _Max Alekseyev_, Jan 20 2010