login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of n-almost primes less than or equal to 10^n, starting with a(0)=1.
16

%I #20 Aug 23 2024 17:18:26

%S 1,4,34,247,1712,11185,68963,409849,2367507,13377156,74342563,

%T 407818620,2214357712,11926066887,63809981451,339576381990,

%U 1799025041767,9494920297227,49950199374227,262036734664892

%N The number of n-almost primes less than or equal to 10^n, starting with a(0)=1.

%C If instead we asked for those less than or equal to 2^n, then the sequence is A000012.

%t AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* _Eric W. Weisstein_, Feb 07 2006 *)

%t Table[ AlmostPrimePi[n, 10^n], {n, 0, 13}]

%o (PARI)

%o almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);

%o a(n) = if(n == 0, 1, almost_prime_count(10^n, n)); \\ _Daniel Suteu_, Jul 10 2023

%o (Python)

%o from math import prod, isqrt

%o from sympy import primerange, integer_nthroot, primepi

%o def A116430(n):

%o if n<=1: return 3*n+1

%o def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))

%o return int(sum(primepi(10**n//prod(c[1] for c in a))-a[-1][0] for a in g(10**n,0,1,1,n))) # _Chai Wah Wu_, Aug 23 2024

%Y Cf. A036352, A114106, A114453.

%Y Cf. A078840, A078841, A078842, A116432, A078843, A116426, A078844, A116427, A078845, A116428, A116429, A116430, A078846, A116431.

%Y Cf. A006880, A036352, A109251, A114106, A114453, A120047 - A120053.

%K nonn

%O 0,2

%A _Robert G. Wilson v_, Feb 10 2006, Jun 01 2006

%E Edited by _N. J. A. Sloane_, Aug 08 2008 at the suggestion of R. J. Mathar

%E a(15)-a(16) from _Donovan Johnson_, Oct 01 2010

%E a(17)-a(19) from _Daniel Suteu_, Jul 10 2023